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Abstract

Temporal Imagery:

An Approach to Reasoning about Time for Planning and Problem Solving

Thomas Linus Dean

Yale University

1986

Reasoning about time typically involves drawing conclusions on the basis of incomplete

information. Uncertainty arises in the form of ignorance, indeterminacy, and indecision.

Despite the lack of complete information a problem solver is continually forced to make

predictions in order to pursue hypotheses and plan for the future. Such predictions are

frequently contravened by subsequent evidence. This dissertation presents a computational

approach to temporal reasoning that directly confronts these issues. The approach centers

around techniques for managing a data base of assertions corresponding to the occurrence of

events and the persistence of their effects over time. The resulting computational framework

performs the temporal analog of (static) reason maintenance [Doyle 79) by keeping track

of dependency information involving assumptions about the truth of facts spanning various

intervals of time.

The system developed in this dissertation extends classical predicate-calculus data bases,
such as those used by Prolog [Bowen 811, to deal with time in an efficient and natural man-

ner. The techniques presented here constitute a solution to the problem of updating a

representation of the world changing over time as a consequeace of various processes, other-

wise known as the frame problem [McCarthy 69). These techniques subsume the function-

ality of current approaches to dealing with time in planning (e.g., [Sacerdoti 77], [Tate 771,
[Vere 831, and (Allen 831).

Applications in robot problem solving are stressed, but examples drawn from other ap-

plication areas are used to demonstrate the generality of the techniques. The issues involved

in processing temporal queries, propagating metric constraints, noticing the invalidation of

default assumptions, and reasoning with incomplete knowledge are discussed in conjunction
* with the presentation of algorithms.
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Chapter 1

Temporal magery

"Nothing i. predetermined; it is determined, or was determined, or will be deter.
mined. No matter, it all happened at once, in less than an instant, and time was
invented because we cannot comprehend in one glance the enormous and detailed can.
vas we have been given - so we track it, in linear fashion, piece by piece. Time, however,
can be easily overcome; not by chasing the light but by standing back far enough to set
it all at once."

-Winter's Tale by Mark Helprmn

1.1 Introduction

The world about us is full of processes, most of which ame beyond our control. In order to

pursue goals and, in general, reason about the changing world around us, we have to make

predictions about how these processes might actually manifest themselves. Some processes

are relatively simple to anticipate, at least at the level required for us to cope successfully

with them (e.g., turning on a light or putting coins in a parking meter). Other processes
require a great deal of effort in order to predict the precise manner of their unfolding (e.g.,

the economic ramifications of the collapse of a chain of privately insured savings and loan

institutions).

We can divide the class of processes that are worthy of our attention into two categories:'

those that are chaotic or capricious and those that are trackable. Capricious processes ame

'This particular categorization is due to Daniel Dennett (Dennett 84).

i21
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CHAPTER 1. TEMPORAL IMAGERY 2

difficult if not impossible to predict with any high degree of precision (e.g., the trajetory

Of a rapidly moving vehicle in traffic or the location of an untethered child). The best

strategy for dealing with such processes is to simply avoid situations involving them that

demand precise information. For instance, in traffic you generally try to keep some distance

between yourself and other vehicles. In the case of watching over a young child, it is wise

to confine the child in some reasonably safe area. If you are forced to deal closely with an

unpredictable process, then the best you can do is attend to it carefully at execution time

(i.e., at the time when you actually have to carry out actions in order to deal with it).

The trackable processes are those that one can accurately predict to the degree necessary

to interact successfully with them. It is the trackable processes and the methods whereby

one goes about anticipating them that this dissertation is concerned with.

Why are we all such avid prognosticators? What does it buy us to be continually second-

guessing everyone and everything we encounter? It buys us time to take into account

the possible consequences of acting in the variety of ways open to us and gives us the

perspective to decide intelligently among the alternatives. It allows us to make opportunities

by preparing us to exploit conditions which, had they come upon us unawares, we would

have been powerless to take advantage of. These answers aren't all that deep or revealing.

They reflect the simple fact that we have limited computational resources at our disposal

for real-time processing. There are situations in which, due to the unpredictability of the

processes involved, the only reasonable response is a tactical response (i.e., one that can be

determined only with information available at execution time). Luckily for us, many of the

processes that directly impinge upon our lives are predictable. Anticipating such processes

helps us to decide what has to bt done now in order to forestall, exploit, or direct the course

of future events.

Anticipation also helps us to coordinate our own actions - actions often conceived in

isolation but discovered during planning to interact in many subtle and not-so-subtle ways.

The representation of a particular action or process is determined by a set of choices that
the planner makes in the course of problem solving. Such decisions are guided by what

is currently known and what the planner currently aspires to. Each choice constitutes a

commitment on the part of the planner as to how the world will be. In the course of

understanding the world and constructing plans to achieve goals, a planner has to make
commitments it is prepared to later retract in the face of evidence of their inappropriate
ness. This evidence has typically [Susnmi= 75j (Sacerdoi 771 [Tate 771 taken the form of
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interactions found to lead to unpleasant consequences. Anticipation in this case helps us

realize when we have made poor choices so that we can amend them before it is too late.

This same basic functionality is critical in any sort of deduction that requires us to make

predictions on the basis of incomplete knowledge. Predictions are generally defeasible. We

make guesses that may turn out to be unwarranted. In planning and temporal reasoning in

general, we have to be able to make assumptions and realize when those assumptions are

no longer valid and the predictions they certify open to question.

Our knowledge of the world will admit to many possible extensions. One task faced by

a problem solver is to construct a picture of the past, present, and future that conforms to

what is known and provides a reasonable matrix for explaining critical phenomena and pur-

suing goals. The following chapters will describe a mechanism for exploring the possibilities

given what is known about events occurring over time and the truth of propositions that

vary with time. This mechanism is to be employed for extending what is known (making

predictions) and recovering from conflicts in the event that new information clashes with

old (e.g., when actual observation conflicts with prediction).

Temporal imagery was conceived as a reasoning process akin to visually scanning large

amounts of data arranged in the form of a map. This analogy has limited usefulness, but we

can get a bit of mileage out of it before we get down to the harsh realities of data structures

and algorithms.

The intuitive picture you should have of the process of temporal imagery is one of

constructing maps, much like the maps used for plotting spatial information, and then

scanning those maps to extract information and notice patterns. In many respects, time is

a lot like space. The events in time are like the objects in a single-dimensional space. For

instance, consider the towns along a railroad track. My information about these towns, just

like my information about events, is likely to be incomplete. I may not know if Greenwich

precedes or follows Stamford on the commuter line connecting New Haven and New York,
but I know that both are closer to New York than Milford. My spatial information is often

metric though fuzzy. The distance from New Haven to Bridgeport is between 15 and 20

miles. Similarly for events. I know that my recent trip to the grocery store took between

15& minutes and half an hour. It is also convenient to store temporal information in a form

not unlike that used for planning trips through space.

In understanding history, it is often helpful to think about the past in terms of a time

line upon which known events are carefully marked. This can help in making observations
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like, "I can understand the peasant unrest at this point in time due to the preceding years

of famine and the increased taxes imposed as a result of a protracted war to secure their

borders from invasion." Of course even in dealing with the past there are uncertainties.

There are events whose order is unknown and about which detailed information is denied

* us. The present generally seems clearer due to its accessibility, but obviously there is much

that is beyond our knowing. As we extrapolate further into the future, our predictions

* . become more and more tenuous.

The right picture to hold in your head is of a graph in which the nodes are instants of

time associated with the beginning and ending of events, and the ares connecting these nodes

describe relations between pairs of instants. Certain pairs of instants are more important

than others, as they indicate important events and spans of time over which facts are said

to be true. Reasoning about time in this framework consists of scanning this graph in order

to determine how one event is related to another and what might be true during, before, or

after an event. Since the instants are not totally ordered one can make hypotheses about

- - what the consequences of certain additional ordering constraints might be and then proceed

to explore some of those consequences. Moving from one instant in time to another does

not require cranking a simulation backwards or forward. The reasoner is not confined to a

single instant of time. It is assumed that it is quite easy to jump about on this graph and

simultaneously keep track of a number of situations occurring at different times.

One of the important characteristics of this sort of graphical representation is that it

can be updated incrementally. That is to say, as new events and facts are added only those

parts of the graph which are affected need be changed. This is known as propagating the

effects of a change. As this propagation proceeds it is important to be able to recognize

when predictions formerly believed to be true are no longer so. This sort of graph scaning

and updating is referred to as "reasoning about time from the side" (McDermott 82]. It's

as though all of what you know about the past, present, and future is laid out in front of

you. A simple example should help to strengthen this intuition.

Figure 1.1 shows a graphical representation of some events and their effects. Events are

represented by two vertical bars connected by double horizontal bars (e.g., toms I). Effects
are represented as a vertical bar indicating when the effect is first believed to be true and
either a second vertical bar providing some indication when the effect ceases to be true or an
angle bracket > indicating that the effect is believed to persist indefinitely into the future.

The end markers for an effect are connected by a single horizontal bar (e.g., I -- )
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(routine-service assembly-unit4)

(status assembly-unit4 in-service)

(manufacture part67)

"t(available-for-use part67)

(assemble item43)

Figure 1.1: Simple graphical representation of events and their effects

Each event and effect is labeled with a formula describing the type of event or effect.

In Figure 1.1, the only orderings are those shown as squiggly lines and these indicate that

one point precedes another. The order of precedence is indicated with an arrow. A squiggly

line with double hash marks indicates that the two connected points are coincident. In

Figure 1.1, there are three events (or in this case tasks). The first involves performing routine

service on an assembly machine, assembly-unit4, and it has the effect that immediately

following the task assembly-unit4 is ready for work. The second task makes part67

available for use and the third task involves the assembly of some composite object denoted

item43. Now at the time the assembly of item43 is to begin it is obvious that part67 is

available for use. It is not clear, though it appears possible, that assembly-unit4 will be
ready for work at this same instant. Let's suppose that the assembly task requires some

assembly machine in order to successfully achieve its purpose. One way that this could be

ensured would be to constrain the routine service task so that it ends before the assembly

task begins. In Figure 1.1, this seems to be straightforward enough to accomplish but

let's consider a slightly more complicated situation. Let's suppose that the assembly task

also relies upon the fact that the conveyor, conveyor34, is running throughout the interval

associated with the assembly. And, as an added complication, suppose that one side effect

of performing routine service on assembly-unit4 is to shut down conveyor34 (assume that

it is hazardous to perform service work on one madcine while the other is running). The

resulting situation is shown in Figure 1.2.

Now we proceed with the ordering constraints proposed earlier to ensure that assembly-

.
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(routine-service assembly-unit4)

(status assembly-unit4 in-service)

(status conveyor34 shut-down)
------------------------------- >

(status conveyor34 running)

(manufacture part67)

(available-for-use part67)
----- ---------------------------- >
(assemble item43)

Figure 1.2: Event with a side effect

unit4 can be employed in the assembly of item43. In Figure 1.3, the routine service task

has been constrained to occur after the manufacture of parte7 and before the assembly of
item43.

Now we have a problem. Figure 1.3 has one effect indicating that conveyor34 is run-
ning and a second showing that it is shut down. Given that these two effects appear to

overlap, it would seem that we have some sort of contradiction. It also seems clear that

the contradiction should be resolved by eliminating the portion of the interval correspond-

ing to conveyor34 running that overlaps with the interval corresponding to it being down
(i.e., the portion indicated with ?s in Figure 1.3). This resolution can be accomplished by
constraining the effect indicating that conveyor34 is running to end before the beginning

of the effect stating that conveyor34 is down. One apparent consequence of this is that
it's no longer true that the conveyor is running throughout the assembly process. Such

consequences should come to the attention of the planner so that it can take steps to cor-

rect the problem. Perhaps there is another assembly machine that will work instead of
assembly-unit4 or, even simpler, the robot in charge of the routine service task could be

instructed to turn the conveyor back on when it's through working on assembly-unit4.

This simple example illustrates the basic functionality involved in temporal imagery:
the ability to determine if a fact or conjunction of facts is true at a time or could be made

7 _ w
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(status conveyor34 running)'. i-----................ ??????????????????????????????????

' \.,(manufacture part67)

(available-for-use part67)

(routine-service asseably-unit4)

(status assembly-unit4 in-service)
-------------------- ------------------------ >

(status conveyor34 shut-down)

(assemble item43)

Figure 1.3: Complications involving overlapping contradictory intervals

to be true with some additional constraints on the existing partial order. In addition, such

a device should be able to point out the consequences which follow from some proposed

change. It must be possible to make conditional predictions (i.e., predictions that depend

upon aspects of the data base that might possibly change) and then determine wl'e such

conditions are no longer met. Described in this way the requisite programs sound less

like a set of routines for scanning maps and more like a system for retrieving and storing

information in a data base. Indeed another way of viewing our graphical representation is

as an indexing scheme for assertions in a temporalized data base. In Section 1.3, I'll shift

the discussion to explore this perspective, but first I want to consider some more general

aspects of temporal reasoning.

1.2 Shallow temporal reasoning

In the introduction, I referred to "a mechanism for exploring the possibilities given what is

known about events occurring over time and the truth of propositions that vary with time.'

The use of the word "explore' is important here. It is difficult to encompass all the possible

repercussions implicit in the information stored in a person's head or a program's data base

- the closure of one's knowledge so to speak. A temporal data base captures what is known

about events and their effects occurring over time. The information in a temporal data base

..
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only partially specifies the way things could be; there may be a great number of possible
completions. Exploration involves constructing some of those possibilities and then choosing
the one (or ones) that appear to be most likely (or most appealing if one has a choice in
the matter). In planning, exploration might involve determining if certain preconditions
for a plan might possibly be satisfied, given what is already known. In medical diagnosis,
it might involve seeing if the known facts can be used to explain a symptom. In addition
to extracting information from the data base concerning what is possible, it is necessary to
confront the consequences of accepting certain possibilities. A diagnostician or planner will
want to know what further commitments are required in order to accept an explanation or
plan. For instance, if I'm to pick up a friend arriving on a 2:00 PM plane, IIll have to start
for the airport right after my morning appointments; if I expect to meet my friend at the
gate, I'll have to assume that the traffi on the turnpike will be light. Making commitments
invariably leads to having to deal with certain unforesceen consequences: if I drive out to

the airport this afternoon, I'm going to miss the colloquium, scheduled for 3:30. Noticing
when the assumptions supporting a given prediction are undermined by new information
is a critical part of coping with uncertain circumstances. If I'm driving along the turnpike
and I hear that traffic on the bridge leading to the airport is backed up five miles due to
an accident, I will want to be aware that I may be late to pick up my friend. My response
might be to revise my strategy for finding my friend once I enter the airport terminal- I'll
look in the baggage claim area befor I go to the boarding gates. If I were meeting a child,
I might feel compelled to stop at a pay phone and have someone at the airline meet the
child at the gate.

A large part temporal reasoning (and problem solving in general) consists of making pre-
dictions (guesses) on the basis of incomplete information, explicitly noting the assumptions
under which those predictions are warranted, and then noticing when those assumptions are
violated in the course of subsequent prediction and information gathering. This section in-
troduces a general framework that supports this sort of reasoning. The framework is called
shalflow temporal rasoning. The reasoning is referred to as shallow because it is broken
down into a number of steps, each of which is assumed to require only a small allowance
of computational resources to carry out. Despite the relative simplicity of the individual
steps, shallow temporal reasoning is not confined to making only simple inferences. Com-
plex reasoning tasks arn managed in this framework by performing the steps repeatedly in
a cycle of inferences. Shallow temporal reasoning consists of the following steps:

* * .* . . *.. . .. . . .
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1. generate a set of candidate hypotheses

2. select one hypothesis from among the candidates

3. use the selected hypothesis as a basis for prediction

4. respond to unforeseen consequences noticed in the course of prediction

These steps are quite similar to the expand/criticize cycle used in NOAH [Sacerdoti 771
and serve much the same purpose in general temporal reasoning. Hypotheses correspond

to particular outcomes warranted by the currently available information about events, their

effects, and their duration and time of occurrence. Committing to a given hypothesis may
involve assumptions about the order in which various events occur, how long a fact will

remain true, or which of several possible alternatives an agent is likely to choose. The
selected hypothesis is used as the basis for making certain inferences or predictions, which

are said to depend upon the selected hypothesis. These predictions can be divided into two
broad categories: projection and refinement. Projection refers to positing the effects of an
event (i.e., determining what new facts follow from the occurrence of an event). Refinement
consists of providing a more detailed description of an event, usually by producing a sequence
or partially ordered set of (sub) events. Ncticing and responding to unforeseen consequences

constitutes a form of debugging.

It should be noted that in reasoning about time there ame a number of combinatorial
problems lurking in the background. Job-shop scheduling, travel time optimization, and
resource management are all generally assumed to be intractable. The techniques described

in this dissertation are not aimed at 'solving'such problems. Their 'solution' will, in
general, require the clever application of knowledge (usually knowledge specific to a given
domain). Shallow temporal reasoning is meant to capture the reasoning of an adept: a
problem solver that is good at dealing with the sort of problems that normally confront it.

Such a problem solver rarely explores a significant portion of the full search space associated
with the problem at hand. The problem solver is not perfect, however, and sometimes it

must perform a bit of surgery on a flawed solution in order to deal with some unanticipated
event or complicated interaction. The problem solver is knowledgeable enough to analyze

* the situation and propose a patch that will work in most case. If after several patches
there is no solution in sight, the problem solver should admit that it's in over its head.
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1.3 Temporal data base management

The primary claim of this dissertation is that it is possible to implement a temporal data base

that naturally and efficiently extends classical predicate-calculus data bases. A significant

amount of common-sense reasoning involves time in one aspect or another. Many of the

facts we are accustomed to dealing with change over time, and hence mak.y of the inferences

we make depend crucially upon whether or not a fact or conjunction of facts is true at

a point or throughout an interval, It seems reasonable that the machinery for performing

routine temporal inference be built into the deductive engine underlying the data base. This

dissertation demonstrates one particular way in which this extension of classical predicate-

calculus data bascs might be accomplished.

A temporal imagery device supporting the sort of functionality outlined in the previous

sections can be viewed as a special sort of data base management system. Such a system

might consist of:

1. A data base that captures what is known about events and their effects occurring

over time. In particular, it is important to record information about the truth of

propositions changing over time. The system should be able to handle the addition

of new information and the removal of old information in an efficient manner using

some criteria for internal consistency. If the user inadvertently adds information

that can't be resolved with existing information, then the system should solicit the

user's cooperation in order to exorcise the problem. Recognizing such situations and

providing appropriate assistance is critical.

2. An interactive query language which allows the user to construct and explore hypo-

thetical situations. This language should support simple retrieval of the form- Is it

possible that P is true at time T given what is currently known? It should also handle

retrieval of the form: Find an interval satisfying some initial constraints such that

the conjunction (and P, ... P.) is true throughout the interval. If retrieval depends

upon additional constraints on the ordering of events, then the system should inquire if

the user is willing to make such a commitment or consult some user-supplied program

for permission to proceed.

3. A method for extending the information in the data base. On the basis of information

extracted from the data base (antecedent conditions), the user should be abe to engage
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in some sort of forward inference (prediction). The predictions added to the data bane
in this way should depend upon the antecedent conditions in some meaningful way.

4. A mechanism for monitoring the continued validity of conditional predictions. This

mechanism would extend the functionality of reason maintenance systems [Doyle 79]
to temporal domains.

The data base is called a time map [McDermott 82]. The routines for retrieval, main-

taining internal consistency, and handling forward inference are combined in what is called
a time map management system or TMM. I will devote the next two subsections to a

more detailed introduction to time maps and the complications involved in temporal reason
maintenance.

1.3.1 Time maps

A time map is a graph. The vertices are points in time, corresponding to the beginning
and ending of events. Constraints are represented as directed edges linking two points.
Each edge is labeled with an upper and lower bound on the distance separating the two
points in time. An interval is just a pair of points. Some intervals arm more important than
others, because they correspond to a particular occasion when a general type of occurrence

happens. These intervals are referred to as tokens of that type. For example, to the event

type alunch at Ray's Greasy Spoon' there may correspond many event tokens, 'lunch at
Ray's yesterday', 'lunch at Ray's today', assuming that one often eats at Ray's. In addition
to tokens referring to events, a token can denote an instance of a fact becoming true and
remaining so for some period of time (e.g., Sino-Soviet relations are tense or funding is
available for deserving researchers interested in mobile robots). For reasons that should
soon become apparent, such fact tokens are called persitencm.

The distinction between fact tokens and event tokens is often strained in common lan-
guage. "Lunch yesterday' appears event-like but during this event it was true that I was
engaged in 'eating lunch', something distinctly fact-like. It is, however, a useful computa-
tional distinction. A token denoting the occurrence of an event has an associated interval

whose duration is generally bounded rather closely. The bounds represent an estimate of
how long the event took to occur. If someone makes a trip to the grocery store, it will
probably take more than five minutes and less than an hour. My usual lunch seldom re-
quires more than half an hour. Many events cannot be interrupted and still occur. The

.......................
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event described as "the inflation of the dirigible" cannot be said to have occurred if halfway

through the operation of pumping hydrogen gas the dirigible burst into flame and collapsed

to the ground.

The bounds on a persistence are treated quite differently. It is not assumed that the

bounds specified when a persistence is first created are indicative of the duration of that fact.
The bounds on the duration of a persistence are maintained so as to capture a default rule

concerning the nature of facts: once a fact becomes true it will remain so until something
happens that makes it false. This amounts to saying that the lower bound on a persistence

is 0, or at least very small, and the upper bound is just the longest I am willing to believe

that the fact will endure or persist unmolested. For instance, in lieu of information to the

contrary, I'm willing to believe that the book I left on my desk this morning will remain
there for several hours. I won't, however, make any bets on it being there next week. If,
on the other hand, someone tells me that he borrowed that book, I'm willing to suspend

my belief: effectively lowering the upper bound on the persistence. The lower bound on a

persistence can be changed to reflect knowledge that overrides the default. If I was sitting
at my desk reading the book all morning, then I'm not likely to accept someone's claim that

they removed the book sometime during that period. Their claim contradicts my beliefs in

a way that cannot be simply resolved.

A classical data-base assertion specifies a fact (type) that is timelessly true. Fact tokens,
on the other hand, corespond to intervals during which the token's fact type is true. In
general, there will be many fact tokens with the same type. Temporal data base queries

generally refer to an interval or temporal index that defines the scope of the query. For
example, the query (tt ?ptl ?pt2 (and P Q)) is interpreted as "determine if both P and

Q are true throughout (tt) the interval from ?ptl to ?pt2r. For this query to succeed, the

data base management system must find a token of type P and a token of type Q such that

each of their corresponding intervals span the interval ?ptl to ?pt2. Since there are likely

to be many tokens of a given type, it is important to store them in such a way that the
above sort of query can be performed efficiently. Among other things, this involves keeping

track of how long fact tokens can be assumed to endure.

It is obviously possible to add tokens to the time map that contradict one another.

There is no need for alarm, however, unless the two tokens span temporal intervals that

necessarily overlap. It can't simultaneously be true that a light is both on and off. It is
one or the other. If, on the other hand, I turned the light on in the morning and off in the

.
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evening, then it is likely that the light was on from the time I turned it on until the time
I turned it off. If I had not turned it off, the light might have remained on indefinitely. If
two tokens asserting contradictory facts are ordered such that one begins before the other

and the earlier could persist longer than the beginning of the later, then the two are said

to be apparently contradictory.

The time map machinery attempts to resolve apparently contradictory tokens by forcing

the end of the earlier to precede the beginning of the later. If this can't be done, the system

attempts to assist the user in removing the contradiction.

Tokens as they are used in the time map are akin to intervals in James Allen's work

[Allen 83]. Persistences are sometimes confused with histories in the sense that Hayes uses
the term [Hayes 79]. A Hayesian history is used to describe a chunk of space/time in which

a given proposition is true. While it is true that persistences have no spatial extent, that
is not the critical difference. Histories form a record that is essentially complete. You can
retract or modify a history, but you can't amend its temporal extent by simply adding more
information. Persistences ame first and foremost a device for default reasoning. They were
designed in such a way that their temporal extent can be easily modified in the face of
new information. Persistences are used in the time map in order to efficiently update the
temporal data base to reflect what events are believed to have occurred and the intervals

of time over which certain facts are believed to be true.

The time map management system is not simply a simulator. You don't reason by

s tipulating a set of initial conditions and then simulating those events to generate a time
line. As I mentioned earlier, the time map is a means of viewing time 'from the side. You
reason with a time map by suggesting modifications to the data base and then exam'iig

the repercussions of those modifications. The time map machinery sees to it that only
important changes are brought to the attention of the calling program. As we'll see in the
next subsection, the 'important changes' are those that involve antecedent conditions used
as a basis for making predictions. The TMM has to be able to detect when certain previously
established antecedent conditions are no longer tenable and then alert the user that all
predictions that depended upon these conditions are no longer supported. Persistences are
the key to doing this efficiently.
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1.3.2 Temporal reason maintenance

Resolving apparent contradictions is only one part of a strategy for handling shallow tem-

poral reasoning. Most inconsistencies are neither so easily noticed nor so easily resolved.

I can't go to a play in New York which starts at 8:00 PM and also attend a reception in

Boston which begins at 7:30 PM on the same evening. The fact that these are not both

possible depends upon the inference that attending both events requires traveling between

their respective locations, a feat which is beyond most of us given the time constraints.

Recognizing that some set of tasks or predictions are incompatible often requires a good

bit of inference. That is to say the repercussions (projections and detailed descriptions) of

a set of events must be explored in order to detect the source of their conflict. Since you

can never tell in advance just where things might go wrong and what you may be forced

to later retract, you have to keep track of why you believe things so that if the reasons for

believing a fact go away, your belief in that fact and its consequences will evaporate as well.
Hypothesis generation can be seen as the means for establishing the antecedent conditions

supporting a given set of consequent predictions. Hypothesis generation is accomplished

using the time map management system's query routines. Querying a changing data base

is a tricky thing. It's not sufficient that the query mechanism return correct information;

it must also keep track of the conditions under which that information continues to be
warranted. If the antecedent conditions should fail, then the consequent predictions should

be retracted or a new warrant established.

Systems that make the sort of conditional inferences described in the previous paragraph

tend to be nonmonotonic (in the sense that Minsky used the term (Minsky 81]) in that the

addition of new information is likely to result in the removal of old. The term "nonmono.

tonic" is bandied about in today's literature as though system exhibiting nonmonotonic

behavior were something special, as though one could choose whether to introduce non-

monotonicity into a system for dealing with the real world. Actually, nonmonotonicity is

inherent in just about every aspect of reasoning in nontrivial domains. Nonmonotonicity

arises as a result of the need to commit to predictions about how the world might be, despite

the fact that you are bound to guess wrong on occasion.

The time map machinery extends the functionality of reason maintenance systems like

Doyle's TMS (Doyle 79] to handle temporalised assertions. A (temporal) antecedent condi-
tion is generally something of the form: P is believed to be true throughout an interval. In

the time map this translates into: there exists a time token of type P such that the token

".off** t* tf. ... tt.t f f t f t . t f f-t
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begins before the beginning of the interval and can't be shown to end before the end of

the interval. If such a condition obtains, we say that P is protected throughout the interval.

Notice that this is nonmonotonic. While it may be true initially that it can't be shown that

the token ends before the end of the interval, additional constraints may change this. Such

conditions are monitored using nonmonotonic data dependencies called protection* (after

(Sussman 75]). Protections and persistences can interact when one token is constrained by
another (contradictory) token as a result of resolving an apparent contradiction. In order to

deal with this and similar interactions, the TMM employs a temporal reason maintenance

system that keeps track of what protections are warranted and hence what predictions

supported by protections are warranted.

The TMM takes care of constructing protections for antecedent conditions and installing

justifications where necessary. The underlying machinations of the TMM ame not visible to

the user. The query language appears no more complex than the typical pseudo-predicate

calculus format used in Prolog [Clocksin 84]. The details will be left for later, but let's look

at some examples to see how this figures in temporal reasoning.

Suppose that I'm trying to print a large document on one of the department's laser

printers. In order to print the whole thing I estimate that it will take between 30 and

40 minutes during which the host machine must be up and the printer functioning. The

document is being submitted for consideration in an upcoming conference and Faust be

ready for express mail pickup by 4:30 PM. It's now 2.-00 PM. My plan is quite simple: I
will send the document file to the printer, IIll pick up the printer output sometime before

4:00, place it in an addressed envelope, and leave it in the express mail bin well before

the 4:30 deadline. My prediction that this simple plan will work is dependent upon a

number of assumptions that I have explicitly made in satisfying myself that everything will

go according to plan. I went and made sure that the printer was functional. On the basis

of this observation and my experience with the system I predicted that it would probably
remain functional throughout the rest of the afternoon. I also called the express mail service

and confirmed that the pickup would occur sometime after 4:30 and before 5:00.

Despite my care in initially establishing the warrant for my plans, any number of things
could go wrong to threaten these assumptions. The printer could break unexpectedly. I

could be told that the clerk at the express mail service was misinformed and that the pickup

occurs regularly at 3:30. I could be delayed in sending the document file to the printer.

Determining that my plan is threatened as a consequence of one of these three, or any of a
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score of other facts or observations, requires reasoning about time.

Suppose that I am told the laser printer is malfunction'n and will be taken out of service.

Then my prediction that the machine would be up and running for the rest of the afternoon

is no longer true. The persistence asserting that the printer will be ..aken out of service

contradicts the persistence asserting that it is functional which was initially established by
observation. Since the the first is not constrained to end before the second, the two are

involved in an apparent contradiction. This can be resolved by adding the constraint that

the persistence asserting that the printer is functional end before the persistence asserting

the printer is out of service. Unfortunately my plan for getting the paper delivered on time

depends upon the printer being functional throughout the time reserved for printing the

document. In the system described in this dissertation the user would be notified of a failed

assumption and told just what beliefs were implicated in bringing about the failure.

As another example, suppose that you're a detective investigating a theft from an aft

museum. You ane trying to explain how the thieves could have absconded with a priceless

painting right under the night watchman's nose. The watchman claims to have been in
another part of the building from 12:00 AM till nearly one: the period during which the

robbery occurred. His story is corroborated by the fact that there exists a record of his

visiting one of the special electronically monitored security checkpoints located in a distant

part of the museum at precisely 12-00. If he continued his rounds as usual he would not have

returned to the scene of the crime until after 1:00. Later, however, you are told by one of

the night janitors that the watchman was seen skulking around in the vicinity of the service

entrance at a quarter past midnight. This entrance was apparently used by the thieves for

their entry into the museum. This would mean that the watchman would have had to pass
the security checkpoint at twelve and then runi clear across the building to have been seen

by the janitor at twelve fifteen. A quick jog tells you that it is quite possible to run the

required distance in less than fifteen minutes. The watchman's alibi is now threatened by
the new information and attention is focussed upon him as a possible collaborator in the

crime.

The watchman's story was called into question by noticing that both the watchman's

story and that of the janitor could not be simultaneously true. The janitor's story was

upheld by the fact that there was an explanation which fitted the facts and his statement.

The explanation is that it was possible for the surveillance system to have noted the presence
of the watchman in one location at 12-00 and, following a fifteen minute run across the

.. . . ... . . . . . . . . .. . . . . . . . . . . . . . .
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building, he could have been seen in the vicinity of the service door. Since the watchman

(but not the janitor) possessed the means to disarm the alarm on the service door, you

now have a possible explanation of how the thieves entered and exited the building without

being detected.

Let's try to put these examples in the context of shallow temporal reasoning. I want

to explain how the thieves could have avoided alerting the watchman. One hypothesis is

that the watchman was elsewhere during the time the crime was occurring. In this case,

the antecedent condition is simply that the watchman remained in the general vicinity of

the electronic checkpoint throughout the critical period. On the basis of this condition, a

consequent prediction is asserted: something to the effect that the watchman would not

notice disturbances in the area where the crime occurred. Later, we try to incorporate the

story of the janitor. Again new events are added (e.g., the janitor observed the watchman)

and new effects are predicted (e.g., the watchman was in the vicinity of the service entrance).

In this case the new predictions clash with existing ones, and the discrepancies between the

watchman's alibi and the janitor's story have to be reconciled.

In the priucer story, one of the predictions is that my plan for getting the manuscript

safely to its destination will work. To make this prediction I have to assume that the printer

will continue to function throughout the period I require its services. When this assumption

fails, I am forced to construct a new plan or simply patch the exmsting one (perhaps the

printer can be repaired in time or another printer can be found).

This pattern of using the time map to establish a set of antecedent conditions fol-

lowed by the assertion of some set of consequent predictions illustrates a sort of controlled

forward chaining which is typical in shallow temporal reasoning. The deduction is con-

trolled in the sense that checking that the antecedent conditions are met for certain an-

tecedent/consequent rules is the responsibility of the applications program. This control

enables the program to determine when it is appropriate to apply certain rules and thereby

carefully direct search. The time map also handles a sort of general purpose temporal for-

ward chaining rule that can be used to reason about the physics of a given situation. The

advantage of such rules is that they don't require that the applications program to continu-

ally check to see that their antecedent conditions are met. It is assumed that whenever the

antecedent conditions are met, it is appropriate to make the consequent inferences. Suppose

that you are reasoning about some complex operations in a factory involving flammable liq-

uids and machinery that might produce sparks or generate intense heat. You might want

•.............................................
* ... •., - .
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to be particularly sensitive to conditions in which the former is likely to be exposed to

the latter. Monitoring such situations by continually querying the data base is clumsy

and ineficient. Disallowing such situations altogether is overly restrictive. All you really

want is to be alerted to such situations when they arise so that you can exercise caution

or prepare for contingencies. The TMM allows one to implement a restricted (no loops)

form of envisionment [deKleer 82] [Forbus 841 for reasoning about simple processes. The

rules can be applied selectively by specifying the rule as a fact token with limited temporal

extent. This sort of forward chaining, which I call auto-projection, can play an important

role in reasoning about time and responding to complex situations. Auto-projection makes

it particularly easy to reason about the effects of actions in planning. A plan need only

specify the actions, the (partial) order in which they must occur, and the dependencies

between the actions in terms of prerequisites. Side effects and actions with conditional

effects are handled by the auto-projection facility. Forward-chaining rules do not add to the

deductive power of a system. They can however considerably alter the performance of a
system [Moore 75], especially one that purports to be good at noticing important changes
in the world.

1.4 A solution to the frame problem

There are two issues that loom large in any discussion of temporal data base management
systems. The first concerns the integration of new information into an existing body of facts

(data base maintenance), and the second concerns the extraction of selected information

(data base retrieval). Both of these issues are related to a classic problem in Al known as the

frame problem [McCarthy 691. The frame problem involves inferring what has and has not

changed in the relatively stable configuration of facts that surround a situation. Actually,

the frame problem can be divided into two problems. The first problem is concerned with the

economical statement of what are called frame azioma, preferably in a first order predicate

calculus formalization of time. Frame axioms allow us to determine what facts remain

unchanged after a situation in which some action is carried out. The second problem is

concerned with efficiently updating a data base of facts involving events and their effects

occurring over time as new facts are added and old ones removed. It is this second frame

problem that concerns us here.

In a temporal data base, certain facts are true over some intervals, false over others,

. . . . . . . . . . .



CHAPTER 1. TEMPORAL IMAGERY 1

and unknown over still other intervals. This presents a problem for the routines responsible

for retrieval and performing various sorts of conditional inference. For example, given that

a fact P is made true at one point, it should be inexpensive to determine whether or not

P is true at some later point. If there are a large number et' intervening events, none of

which mention either P or its negation, then those intervening events should not impose an

additional burden on the retrieval process.

The time map management system uses a traditional predicate-calculus database to

store facts that are believed to be timelessly true but which refer to particular intervals or

instants of time. So for example, (tt (date 9/1/82 12:00 AN) (date 12/3/85 12:00
AN) (enrolled Avery graduate-school)) might be used to represent the fact that Avery

was enrolled in graduate school from September of '82 until December of '85. You might also

have statements of the form (before (graduation Avery high-school) (date 9/1/82
12:00 AM)) indicating that Avery graduated from high school before September of '82. In

order to answer, "Yes.", to a question like, "Was Avery in graduate school during June

of '83', the system has to supply routines that interpret the facts stored in the data

base appropriately. Interpretation is fairly simple if we're only dealing with points known
precisely in a single global frame of reference. Once we introduce partial orders, fuzzy

metric constraints, and multiple frames of reference, interpretation becomes considerably

more difficult. To deal with this we can design routines for organizing and interpreting

the set of timelessly true facts that encode the stored temporal information. For instance,

to determine whether a fact P is true at a point ptl, find a point pt2 in the past where P

became true, determine the first point pta after ptl where P was made false, and then see if

you can determine the order of ptl and pta. Some of these operations may require a certain

amount of search, but if you're careful in organizing your facts, it's fairly straightforward to

perform such basic inferences without examining every single thing that went on between

ptl and pt2. Using standard data dependency techniques we can cache deductions and

perform indexing operations in such a way that the data base remains invariant relative to

certain inferential criteria, despite additions and deletions performed by the user.

Maintaining temporal data bases efficiently is made difficult by the fact that changes

with regard to one event potentially require reconsidering all inferences made with regard

to later occurring events. The problem of data base maintenance in time maps is further

* complicated by the TMM's sophisticated representation of time. Unlike the early situa-

tion based approaches [McCarthy 691, the TMM deals with metric constraints, incomplete
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information, overlapping events, and simultaneous actions. It you're not careful, you can

waste a considerable amount of effort just determining whether or not two points are or-

dered with respect to one another. The TMM uses selective caching and heuristic graph

search techniques in order to carry out these operations efficiently. As in classical data

bases augmented with reason maintenance systems [deKleer 78], it is convenient to make

assumptions based on incomplete knowledge, and realize when those assumptions are no

longer warranted. The TMM supports various methods for performing conditional predic-

tions that extend the classical techniques to deal with time. The addition of a new event,

fact, or constraint on the occurrence or duration of an event can result in the reconfiguration

of a considerable portion of the data base. In most cases, however, the changes are minor.

Temporal reason maintenance makes use of persistences and protections in order to see to

it that data base updates are performed efficiently.

The techniques described in this dissertation constitute a solution to the frame problem.

A major portion of my research involved figuring out a reasonable functionality for temporal

reasoning, and then demonstrating that this functionality could be efficiently and naturally

supported. Coming up with a solution to the temporal data base update problem was

critical in providing this demonstration.

1.5 Strategies for reasoning about choices and commitments

in planning

In this section, I want to look into the problem of recovering from bad choices made in

planning. The issues addressed here are similar to those that have to be dealt with by

any system responsible for making predictions from incomplete knowledge. I have chosen

planning as a context in which to explore these issues because they are especially apparent in

planning and because planning is an important area of application for temporal reasoning.

The basic technique employed in hierarchical planning systems capable of recovering from

bad choices [Tate 77] [Vere 83] is to make choices while keeping alternatives on a stack (or

* more complicated data structure). When you ran into trouble you return or backtrack to

some previous choice point and try one of the alternatives. If you always return to the last

choice made (the top of the stack), then the recovery strategy is referred to as chronological

backtracking. Backtracking is somewhat complicated by the fact that in the interim between

choice points the data base may change significantly. Since the data structures involved are
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generally quite large, transition.oriented search is the method most often used for modifying

the data base to reflect changes that you may wish to reverse at some later time. In

transition-oriented search, you keep track of all actions performed between choices and

then simply undo them during backtracking.

The backtracking scheme most often employed is simple chronological backtracking (the

reason being that it is the simplest to implement), but other methods have ben tried.

Austin Tate's NONLIN [Tate 77] could return to any previous choice point by maintaining

a record of how various prerequisites are dealt with and the structure of the planner's

goals and the tasks designed to satisfy those goals. The only problem with this approach

is that when a choice is undone all choices between that choice and the last choice made

have to be undone as well. Tate's approach is better than pure chronological backtracking

(assuming that the decision concerning what choice to backtrack to was intelligently made),

but it still leaves a lot to be desired. The AMORD system [deKleer 781 introduced the idea

of dependency-directed backtracking. This enabled one to return to any previous choice

point (presumably the one most strongly implicated in the problem at hand) and attempt

to fix the problem locally without (necessarily) throwing away all the work done in the

intermediate steps of the problem solving effort. Keeping track of dependency information

allowed th- problem solver to undo just those steps which were dependent upon the decision

being reversed. Lesley Daniel [Daniel 83] produced an extension of NONLIN which used

a decision graph to keep track of dependency information and support much of the same

functionality.

In the time map, we have incorporated certain of the strategies used in AMORD. In

particular, the TMM subscribes to the basic idea of dependency-directed fault detection and

analysis. Fault detection involves noticing when something that was previously believed is

contravened by new information. For instance, suppose that I am constructing a house and

decide to have the sheetrock walls installed earlier than previously planned. Dependency-

directed fault detection should enable me to realize that my current plan for installing a

custom stereo system will no longer work. Fault analysis involves determining precisely what

conditions are implicated in causing the fault. Continuing with the construction example,

fault analysis should help to determine that the reason the custom stereo installation will fail

is because it depends upon placing the speaker wiring behind the sheetrock. In keeping with

the dictates of shallow reasoning, these dependency-directed techniques should be coupled

with methods for patching plans or recovering from predictive failures. It's also quite

-y .
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easy to incorporate a (full) dependency-directed-backtracking scheme into the time map

routines, but that would be counter to the sort of shallow reasoning encouraged in this thesis.
By caching information about failures, a planner can jump around in the search space,
attempting to fix the problem locally, without sacrificing completeness. This information

about failures is used to remove portions of the search space from consideration and to
avoid exploring the same possibilities twice. Of course every planner that admits to the
possibility of making poor choices has to keep around some information about what paths it
has already explored, if for no other reason than to avoid endlessly cycling. In chronolgical

backtracking the necessary information is kept to a minimum due to the systematic manner
in which the search space is explored. Dependency-directed backtracking requires caching

more information due to the way the planner jumps around in the search space. The method
is complete, since once you have tried all your best guesses about how to fix the problem,

you can fall back on a more systematic approach without fear of repeating yourself. But
there is a practical flaw in relying upon such methods as a crutch to fall back on. Once

* . you exhaust your local patches there is very little direction that the system can provide for
exploring what's left of the search space. Unfortunately, the portion of the search space left
is generally quite large. If the problem has few or even no solutions, then the system will

not likely terminate in a reasonable amount of time, or at al. To rely upon combinatorial

methods as a default strategy is a luxury available only to those working in trivial domains.

Planning schemes of the sort we are discussing here rely heavily upon knowledge of the
domain they are used in. If you don't have the knowledge to make good choices, then

perhaps exhaustive search is the best you can hope for (that is to say you have very little
hope at all). But even if you can make good choices some of the time, the world is too
variable, and planning in nontrivial domains too complex, to expect that one will make the

right choice all of the time. A planner must also have the knowledge to recover from minor

setbacks. If things become too complex, you might as well give up or reconcile yourself to a

combinatorial search. Despite a certain amount of hype and misunderstanding concerning
their use, dependency directed methods do not offer us an alternative in this situation.
Using dependency-directed methods to explore an exponential space is misguided. I've

tried such methods, and it's enlightening to experience firsthand how many times you can
avoid an exponential amount of work and yet still have an exponential amount of work left

to do.

It's interesting to see just how often exponential computations crop up in systems de-
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signed to support "critical" functionalities. Resource management is a prime example. In

planning, everything is a resource in need of management. Even the truth of a proposition

over a span of time can be viewed as a shareable resource. Managing resources inevitably

requires making choices. Let's suppose that we have a bunch of objects (called a pool) alike

in certain respects but different in others. For example, say we have a pool of lathes all

of which can be used to turn metal (manufacture objects with circular cross sections), but

some of them cut threads while others cut slots in shafts. The object during planning is

to delay commitment to a particular, lathe until it's absolutely necessary to make a choice.

You want to avoid the situation in which you commit to a particular lathe for use on one

job, and then later find out that the special features of that lathe are essential to some

other job that must be carried out in parallel with the first. By procrastinating, the hope

is that you will avoid the need for backtracking in case where you might have commited

prematurely.

The management of lathes as a resource can be modeled as a partial order on trsusec-

tions. Each transaction consists of either withdrawing a lathe (exactly which lathe is not

specified) from the pool (i.e., putting it to use) or depositing a lathe in the pool (i.e., mak-

ing a lathe avaiable for use). You want to put off committing to either the order in which

the jobs will be executed, or the machines they will employ. Procrastination lets you avoid,
in some cases anyway, the need to backtrack, but it also makes certain crucial deductions

difficult. In particular it is costly to make sure that you don't overcommit yourself (ie.,

allocate what you don't have). You want to make sure that at all times there exists some

schedule (total order) consistent with the constraints imposed thus far (the current partial

order) such that the number of lathes in the pool never dips below 0 (i.e., somebody needs

alathe when none are available). This task is generally assumed to be computationally

intractable foarey 79]. 1 claim that the planner would be as well served by committing to

a particular lathe and then patching or debugging the plan when it ran into trouble.

Even if the scheme described above were computationally feasible, it provides no means

for reasoning about several resources being managed simultaneously. While the planner

may construct "some plan, it may also ignore opportunities for merging tasks and con-

solidating effort. My main objection, however, is similar to that raised in response to

dependency-directed backtracking. This sort of resource management system provides a

uniform method that distracts attention from what I claim is the only real hope of dealing

with such problems: namely the application of domain-specific patches in response to the
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detection of local interactions.

The strategy for resource management by making tentative commitments relies upon

two basic functionalities. First you have to keep track of the reasons why you believe

various things. This enables you to recognize an interaction, obtain information concerning

the reasons for that interaction occurring, and reverse decisions that led to that interaction.

The second functionality (definitely the harder of the two) is concerned with good guesses

about which interactions to resolve. It is only the first that is handled by the TMM.

All of the schemes discussed thus far have problems in reasoning about merging plans

involving several different sorts of resources. The problem can be traced to an inability to

recognize opportunities in sets of exclusive alternatives. Let's consider a simple example

involving the management of machine tools. Suppose that the planner has a task which

involves reducing the diameter of a special shaft. Given the required close tolerances, this

task can only be accomplished using the small screw-cutting lathe or the larger engine lathe.

The task will take longer on the smaller machine but it won't tie up the more versatile engine

lathe. Still the planner wishes to leave its options open. Now, let's suppose that the planner

is given a second task which requires it to mill a slot in the same shaft. For this job it can

use either the engine lathe or a milling machine specially designed for the job. The milling

machine is located at some distance from the screw-cutting lathe so travel time between the

two machines has to be taken into account. The shaft could be transferred from the screw

cutting machine to the engine lathe but that would require that the shaft be positioned

twice, once in each machine. Positioning a workpiece can occupy a significant amount of

time. The best solution would be to perform both tasks in the engine lathe. In fact, the

ability to perform several operations with minimal setup time is precisely the reason that

machines like the engine lathe are purchased. Reasoning about alternatives allows one to

recognize opportunities for using a versatile piece of equipment while avoiding its use in

situations where its services are wasted.

The problem of recognizing opportimities to improve plans is distinctly different from the

problem of dealing with potential failures. When you have a failure, at least you know that

you have to consider some changes to your plan. In the example described above, not using

the engine lathe for both tasks would result in a suboptimal plan, but the plan would still

work. There was just an opportunity that the planner had no way of anticipating and would

mins altogether unless it was able to represent certain of its alternatives. By representing

several alternatives at once, a planner could piece together a plan by combining alternatives
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that are seen to complement one another. What I am suggesting here is rather disturbing.

I'm suggesting that in addition to simply enumerating or sequentially exploring selected

portions of an exponentially large search space we need to represent some number of the

alternatives simultaneously. Not being satisfied with our precarious dance with a problem

requiring exponential time, we're going to risk using an exponential amount of storage as

well.

Well, it's not quite as crazy as it sounds. If we are considering n independent decisions

consisting of 2 (exclusive) alternatives each, then there are 2 possibilities that we have to

consider. In most cases, however, these possibilities share an enormous amount of structure.

If the interaction between alternatives is low, then the storage overhead can generally be

kept far closer to 2n. The time map provides an efficient mechanism for reasoning about

exclusive alternatives. Using this mechanism, one can keep track of a number of alternatives

at once. It keeps exclusive alternatives separate and provides the means for reasoning about

compatible alternatives. By using virtual-copy techniques (assertions have labels that state

under what combinations of alternatives they can be considered valid), the system can offer

this functionality without an exorbitant storage overhead. The machinery can handle a
wide class of temporal reasoning tasks involving disjunctions. It provides the functionality

that supports the optimization of plans and provides an interesting framework in which

opportunistic merging of plans can occur.

Not surprisingly, there are numerous opportunities for performing an exponential amount

of work in supporting the above sort of reasoning. A certain amount of work is avoided

by using structure-sharing methods so that only one copy of an assertion need be dealt
with. In other cases, we sacrifice completeness for speed by using heuristics that avoid work

during constraint propagation. But there's no way to avoid it altogether. If you want to

solve an intractable problem, then either you're going to have to do an exponential amount

of work or you already almost have the answer. Obviously the latter is preferable, and in

some sense it's the only alternative open to us. Of course a good hunch about where to

look is almost as good as having the right answer handed to us straight out, and it is good

hunches that we are relying on to make the above scheme practical. I think the methods

developed for the time map for exploring a number of alternatives simultaneously are as

good as one could hope for.

The methods for handling exclusive alternatives are also employed for reasoning about
counterfactuals and prevention tasks (Dean 851. In order to determine if a task to prevent
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an event £ is warranted, you have to keep in mind a world in which you don't take any

preventive action. Once you have decided upon an action to prevent F, you have to be alert
to changes that might render your efforts unnecessary or ineffectual.

The techniques for handling disjunctions and reasoning about exclusive alternatives con-
stitute a departure from the standard approaches to planning. It is hoped that they may

prove to be an efficient alternative to sequential exploration. I am afraid that I will not
be able to provide any conclusive evidence one way or another on this score. These tech-
niques are the newest addition to the TMM, and much of the research reported in these

pages is preliminary. It's obvious that if they are to be used effectively they will have to
be integrated into a well-thought-out strategy. The planner might selectively generate ex-
clusive alternatives in situations where it "guesses' there may be some payoff. Equipped
with the knowledge of what sets of alternatives are likely to be useful in a given set of

circumstances, my expectation is that exploring several possibilities simultaneously will be
considerably more effective than exploring them sequentially using standard techniques.
This expectation is borne out of the fact that this notion of reasoning about several alter-

native descriptions of the world simultaneously is a natural extension of the idea of least
commitment first demonstrated in Sacerdoti's use of a partially ordered network of tasks
for planning [Sacerdoti 771. The general principle is simply that if you have no principled
way of distinguishing between two or more alternatives, consider them all. If this imposes

no major decrement in predictive power, then procrastination is likely to payoff. There are
of course situations in which indecisiveness leads to the reasoner being swamped. Least

commitment and the techniques described here for reasoning about alternatives are simply

heuristic strategies. If the number of outstanding alternatives is small, then the problem
may be feasible (the exponential overhead may be within the computational capacity of
the machine given the time constraints). You can't solve hard problems without the requi-
site experience or knowledge. The TMM provides machinery for exploring the possibilities

in what you already know. It makes no effort to supply uniform methods for 'solving
intractable problems. It does, however, provide all the necessary machinery for solving
problems within the grasp of a planner suitably informed. It should come as no great sur-

prise that these problems frequently correspond to the sort that a reasonably well endowed
human can solve with proper training.

.~.* %
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1.6 Related work

The literature on time in philosophy, logic, and computer science is quite extensive. In the

following, I will restrict my attention to work that has been done in Al regarding automated

temporal reasoning. For a wider perspective the interested reader is urged to consult the

1982 survey by Bolour et al [Bolour 82].

Much of the early work focussed on extending data bases to take into account the

temporal dimension. Findler and Chen [Findler 71] described a data base system used for

reasoning about cause-and-effect relationships. Their system dealt with events having dura-

tion and start and finish times that needn't be completely specified. One of the interesting

aspects of this work is that it sought to deal with the problem of reasoning with incomplete

knowledge. Around the same time (1971-2) research in natural language was attempting to

deal with the problems of tense and temporal reference in processing text. The CHRONOS
system [Bruce 72] was able to answer questions about incompletely specified information

extracted from natural language input. Medical diagnosis was another area in need of tech-

niques to deal with partial information. The 'time specialist" module of Kenneth Kahn

[Kahn 77] was capable of representing inexact temporal facts. This imprecision was rep-

resented using plus/minus error intervals for event dates, the duration of events, and the

spans of time separating them. The work emphasized the need to organize events using

reference events, before/after chains, and chunks of time (e.g., historical periods). It also

made use of the fact that reasoning could occur from different perspectives or frames of

reference.

The system to be described in this dissertation directly addresses the problem of dealing

with partial information. Every point in a time map is itself a frame of reference. Con-

straints between points are described as fuzzy intervals [McDermott 84] similar to Kahn's

plus/minus error intervals. The TMM can exploit the structural properties of events (e.g.,

causal and task/subtask relationships) in order to expedite queries. James Allen [Allen 83]

has also understood the importance of such organizational strategies for dealing with large

amounts of information. The indexing techniques described Chapter 4 were motivated

in part by Allen's notion of reference interval and Malik and Binford's reference frames

[Malik 83]. In [Dean 84], I compare Allen's techniques involving reference intervals with

those used in managing time maps.

Another critical issue concerns what sort of things it's important to reason about (ontol-

: ............. ,..,.........,..,..................,,,......:...,................-. .... .,. .....:..
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ogy) and what sort of basic axioms or inferences are required for common sense reasoning

about time. Pat Hayes' "Naive Physics Manifesto' [Hayes 79] stressed the need to encap.
sulate both temporally and spatially the truth value of propositions. His notion of history

was used to capture the temporal and spatial extent of propositions in order to facili-

tate reasoning about everyday phenomena. Drew McDermott developed a temporal logic

fMcDermott 82] aimed at much the same sort of thing. McDermott ignored the spatial

extent of propositions and replaced histories with the notion of the permistence of a fact.

The most important aspect of thinking in terms of the persistence of a fact is the default

character of the reasoning process. A predication of the form (persists some-fact from-

some-instant for-sone-length-of -time) represents a guess about how long a fact, once

made true, will endure. This guess can be amended in the presence of contrary information.

McDermott's system was nonmonotonic: a property that made it less appealing to logicians

but seemingly closer to the sort of reasoning a real program would engage in. Around this

same time James Allen came out with an interval-based temporal logic (Allen 83] that had

some very nice properties. Allen focussed on the interval as the most important object of

manipulation (McDermott's is said to be a point or instant based logic). Allen also looked

into the problem of implementing a system that employed his interval approach. This sys-

tem computed the transitive closure of a set of interval relations in order to speed temporal

queries.

The time map management system has taken something from each of these approaches.

The TMM uses points or intervals with equal facility. As in Allen's logic, intervals, called
tokens, associated with specific events and effects are the primary object of interest. A

fact-like token or persistence is like a Hayesian history in that it attempts to capture the

temporal extent of a proposition. Persistences in the time map, like Hayes' histories, are

terms or objects to be manipulated. Certain inferences are said to depend upon the duration
of a persistence. Such dependencies are nonmonotonic. The query mechanism sets up these

nonmonotonic dependencies (called protections) in order to monitor the continued validity
of inferences made on the basis of the response to a query. The time map incorporates
a temporal reason maintenance system to keep track of what's true as the user modifies

the data base. This makes it possible to reason with precision about the repercussions of

specific changes to the data base. To my knowledge this general approach is unique though

there have been some interesting special-purpose mechanisms which have been developed for

planning systems. Lesley Daniel (Daniel 83] developed an extension to NONLIN [Tate 77]
which employed a decision graph to enable the system to backtrack efficiently. Her approach
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allowed the planner to undo any previous choice in such a way that only those subsequent

choices that depended upon the recanted choice were affected. Steven Vere [Vere 85) has

been looking into similar mechanisms for the DEVISER planner.

Planning research over the last two decades has in one way or another had to address

the problem of reasoning about time. The STRIPS planner [Fikes 71] tried to construct

(temporal) sequences of operators to achieve tasks. Gerald Sussman [Sussman 75] built
a planner that attempted to recover from its mistakes by carefully simulating the plan,

noticing potential problems, and then suggesting patches to avoid bugs in the form of
protection failures. One of his important contributions was to incorporate the idea of a
protection (i.e., that a fact once made true should be preserved until it has served its

purpose) into planning along with the idea of crititism. A critic is just a program that

analyzes what went wrong when a protection fails. In the TMM noticing protection failures

is carried out by the temporal reason maintenance system. There still is no real theory of

criticism though some progress has been made [Wilensky 831.

Hendrix [Hendrix 73] considered methods for reasoning about continuous processes in

the STRIPS paradigm. Hendrix' job was made somewhat easier by the fact that STRIPS

only dealt with linear orders. Earl Sacerdoti demonstrated with his NOAH planner [Sacerdoti 771
that with the proper representation (procedural networks) it was not only possible but prof-

itable to reason about partially ordered tasks. Austin Tate's NONLIN planner [Tate 77]
showed how keeping the right information around allowed you to deal with inopportune

choices by efficiently backtracking. The TMM is designed to reason about partial orders,

but it is also capable of reasoning about metric time which neither NOAH nor NONLIN
could. Steven Vere [Vere 83 corrected this deficiency by constructing an extension of NON-
LIN which was capable of reasoning about tasks that took time. Vere's program DEVISER

assigned each task a duration and a window of time stipulating an earliest and latest start
time. These two numbers might begin rather loosely specified and then become more and

more tightly constrained as planning progressed and decisions about ordering tasks were

made. The time map's fuzzy interval representation of constraints allows it the same sort of
power. This has been demonstrated in the FORBIN planner [Firby 851 [Miller 8Sa] which
solves problems in an automated factory domain.

The need to reason about deadlines is an important aspect of planning. The basic

problem is one of scheduling a set of tasks in order to avoid deadline failures. Stephen

Smith [Smith 83] designed a constraint propagation technique and temporal representation

.......................
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for solving job-shop scheduling problems in the ISIS project [Fox 82). The same general
approach (but more domain specific) was used in Goldstein's NUDGE system [Goldstein 75].
In the FORB[N planner the scheduling problem and the general problem of reasoning about
partial orders have been separated out. In addition to the TMM, the FORBIN planner uses
a scheduling module designed by David Miller [Miller 83) [Miller 85b). Miller's scheduler
efficiently explores the space of possible schedules to avoid making decisions that might
lead to deadline failures. FORBIN uses the information supplied by the scheduler to make
ordering decisions where necessary, while at the same time retaining the partial order on
independent tasks to avoid backtracking.

The basic techniques used in NOAH have also been extended to employ interval based
logics [Vilain 82] [Cheeseman 84] and reason about alternatives [Wilkins 84]. In regard to
the latter David Wilkin's SIPE planner employs a context mechanism [McDermott 83] to
reason about alternative plans for achieving tasks. The TMM extends this functionality
by providing sophisticated techniques that enable a planner to reason about a number of
exclusive alternatives simultaneously. In the area. of reasoning about several alternatives
simultaneously, I know of no work that directly addresses the temporal issues from a data
base management perspective. However, my ideas on this were considerably influenced
by the work of deKleer jdeKleer 841, Martins and Shapiro [Martins 831, and McDermott

[McDermott 83].

1.7 Summary

The machinery developed in this research was designed expressly to support common-sense,
shallow, reasoning about time needed for planning and problem solving. It directly con-
fronts the two most important issues involved in temporal reasoning. temporal information
is generally incomplete and predictions made in the course of reasoning about events are
generally defeasible. The result is a useful computational framework for planning and prob-
lem solving. This framework subsumes existing systems both in terms of representational
power and in terms of functionality and computational efficiency. The time map routines
have been employed in several planning systems for robot problem solving and promise to
be a practical tool for both research and development. The rest of this dissertation will
explore the details of the framework and possible applications for such a tool.
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1.8 Thesis organization

The first chapter, which you ae presently reading, is a broad overview and introduction

to reasoning about time. The second chapter describes the terminology and ontological

commitments behind temporal imagery: the objects and operations around which this ap-

proach to temporal reasoning revolve. The notions of token, event, and protection which we

briefly mentioned in this chapter are discussed at greater length along with a number of new

terms. The third chapter describes how to go about using the TMM system. This includes

a large number of examples covering the full range of the system's capabilities. Chapter 3
is quite long as chapters normally go. You can consider Chapter 3 as a user's manual whose

chapters correspond to the section headings of Chapter 3. Chapter 4 is rather technical. It

describes time maps in terms of data structures and algorithms. A proof of correctness for

the temporal reason maintenance algorithm plays a central role in this chapter. The fifth

chapter deals with the application of temporal imagery to planning. The last chapter is a

catchall: summary, suggested extensions, problems, and offhand remarks.

. . . . . . . . . . . . . . . . .



Chapter 2

Basic Terminology

2.1 Introduction

This will be a relatively short chapter. I want to introduce some terminology and explain
how it fits into a general framework for reasoning about time. The basic notions are few and
they are fairly easy to describe. The hard part will come in later chapters when I describe
how these few notions provide the foundations for my approach to temporal reasoning. The

concepts that appear in this chapter are basic to the rest of the dissertation and they will
be explained more than once in the following chapters. Some of them will be familiar to
you from the introductory chapter. The main reason for this chapter is to gather these
concepts into a single place and set the stage for the computational theory to follow.

2.2 Ontological commitments: points, intervals, and time
tokens

We begin with the idea of a time point or mn.Iant. Points are generally associated with
things that are believed to happen in the world. They are always fictitious to some degree.
A point may correspond to an "event' that never occurred. Points also have the property
that they are often hard to pin down. Nevertheless, it is harmless and often useful to speak
about "the point at which he realized the error of his ways' or "the point at which he
entered the room'. The sort of points we are speaking about needn't correspond to "real'

32
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ptl C1 pt2
"0 ' 1.2.] C3 5,6

C4

Figure 2.1: Relating pairs of points with constraints

events at all. I don't know when I will wake up tomorrow morning. Assuming that "the

point corresponding to my awakening Thursday morning' makes sense, it's not likely that,

unless I take special pains, I will ever know anything very precise about this event. For

most purposes "between 6:00 and 7:00 AM" will suffice.

A point provides me with a frame of reference for reasoning about the temporal rela-

tionships between events. What may be described as a point from one perspective might

be better viewed as an interval or pair of points from a second perspective. In the context

of some esoteric debate concerning say, "the first conscious thought of the day", I may find

it constraining to speak of the "the moment of my awakening' as a point. I may wish to

speak instead of the interval of time over which I was in the "process of waking'. I haven't

eliminated the need to speak of points, however. In this case, it will probably be convenient

to refer to the events corresponding to the beginning and ending of that interval, where

these two events can be described as points.

The point of my awakening provides a reference point of sufficient resolving power for

a wide variety of reasoning tasks. I can speak about the morning paper's arrival or my

first appointment of the day in the frame of reference of "waking up this morning. i don't

demand that the points I ascribe to have any physical reality. Points are simply inventions

that serve to organize my knowledge of the world about me. Of course, it's desirable that

the points I make reference to roughly correspond to events that actually happen in the

world. Such a correspondence ensures that my perception of the world is not too far out of

synch with reality.

To relate one point to another, we introduce the notion of a point-to-point constraint

or simply a constraint. A constraint is just an upper and lower bound on the distance

................. a upper
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separating two points. There can be any number of constraints relating the same two

points. If the constraints are consistent with one another, then the maximum of the lower

bounds will always be less than or equal to the minimum of the upper bounds. I can relate

any two points by finding a path from one point to the other, where a path from pt to

ptI is just a sequence {pto,cl,pti ... cn,ptn) such that pto through ptn are points and ci is

a constraint relating pti-I to pti. Figure 2.1 shows three points related to one another by

several constraints. The constraints are directed. For every constraint from a point ptl to

a point pt2 with lower bound low and upper bound high there is an implicit companion

constraint (usually not shown in diagrams) from Pt2 to ptl with lower bound -high and

upper bound -low. For each path connecting a pair of points, I can compute an estimate

of the distance separating the two points by summing the upper (lower) bounds of the

individual constraints in the path. There may be several such paths for any given pair of

*. points. In Figure 2.1, (ptl.,C.pt2), {ptlC2,pt3,C3.pt2) and {ptl.C2.pt3.C4.pt2)

are paths relating ptl and pt2. Their respective bounds are (6,9], (6.8], and -1, 1].

Generally I'm interested only in paths that give either the greatest lower bound or the

least upper bound. In figure 2.1, (ptl ,C2.pt3,C3.pt2) provides both the greatest lower

bound 6 and the )east upper bound 8 on the distance separating ptl and pt2. A set of

constraints is said to be consistent just in case for all pairs of points <pto, pt,> and all
paths {pto, e1,pt1 .. . ,pt,,) where each ci is in the set of constraints, the sum of the lower

bounds of the ci is less than or equal to the sum of upper bounds of the ci. The set of

constraints shown in Figure 2.1 is consistent.

Constraints are the glue that binds sets of points together in a network. That network

is referred to as a time map. A good deal of the rest of this chapter will be concerned with

adding more structure to this simple network.

An interval is just a pair of points such that one point is constrained to precede or

be coincident with the other. Each interval consists of a begin and an end point such

*that the beginning precedes or is coincident with the ending. In Chapter 1 we introduced

the notion of event and fact tokens corresponding to the occurrence of phenomena in the

world. Such phenomena are categorized by type. A type is denoted by a formula like

(operational-status lathel7 in-service) or (routine-service assembly-unit34).

An interval together with a type will often be referred to as a time token (or simply token in

situations where it should cause no confusion). An event or fact type is a class of phenomena

(e.g., all of the times, past, present, and future that I have attended, am attending, or

.. ".'"."."-" -.-. " " ." -. '."...-..-..-"-..,"-".....".,'.."...-..."......-....."......"...-.....".".....".........'."..".......".. "',-..-...'..-..-..-''-,
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possibly will attend a concert in Woolsey Hall). Time tokens are particular occurrences of

types of events or particular instances of facts becoming true and enduring over a period of

time (e.g., the event token corresponding to my attending the concert featuring the Juilliard

String Quartet in Woolsey Hall on December 17, 1985). The type/token distinction is meant

to distinguish between classes of things and instances of those things.

In the computer, a token is described by a data structure. From now on, I will use

the term "token" to mean this data structure rather than the actual occurrence. This

abuse is harmless. In the computer it's possible for there to be two time tokens having
the same event or fact type and coincident begin and end points. The two tokens are not

identical as data structures, and it is quite likely that they came into being via different

deductive paths; yet it would seem that they correspond to the same phenomenon. Making

the identification may turn out to be critical in ascribing blame in complex situations

[Shoham 85a]. However, we'll want to retain both data structures in the event that later

evidence serves to distinguish them. Tokens are manipulated by a program as descriptions

and like any other descriptions, a pair of tokens may turn out to describe the same thing.

A simple example should illustrate.

Suppose that I know that some saboteurs have mined a bridge and then detonated the

mines, causing the bridge to collapse. In addition, I am told that a plane dropped a bomb

on that bridge at exactly the instant that the saboteurs detonated their mines. This also

would cause the collapse of the bridge. Internally I have two tokens denoting the bridge's

collapse. Each token has a different derivation. According to what I currently know, these

two tokens denote the exact same phenomenon. If I wish to know what caused the bridge

to collapse, then I will have to refer to the derivations for each token. If I later find out
that the plane actually arrived 5 minutes after the mines were detonated, then I may want

to amend my beliefs and deny that the plane's bomb caused the bridge's collapse.

I now want to distinguish fact tokens from event tokens, and, by connection, fact types

from event types. An event token generally refers to an interval over which some activity
takes place or some process runs its course. For example the time during which I rode the

bus from home to work this morning would be an event token with event type (transport

self bus34 (home self) (work self)). What distinguishes it as an event is that it has a

fairly well defined duration. The criteria for its beginning and ending ae self-contained, as it
were. The "definition" of (transport self bus34 (home self) (work self)) implicitly

includes the conditions for its beginning, boarding bus34 somewhere in the proximity of

-o". . .
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my home, and ending, stepping off bus34 outside of Dunham Lab. If for some reason these

conditions are not met (e.g., bus34 breaks down somewhere along the way), then the event

has not really occurred. Fact tokens generally refer to propositions which are made true and

remain so for some (indeterminate) period of time. For instance I can reason about the fact

that boarding bus34 resulted in my being on bua34 using a fact token with fact type (on

self bus34). It so happens in this case that the time tokens for (transport self bus34
(home self) (work self)) and (on self bus34) have coincident begin and end points.

If things had turned out differently, say the bus had broken down, then this might not be
the case. If the bus had broken down halfway to work, then the token for (transport self

bus34 (home self) (work self)) would not represent a real event. The token for (on

self bus34), however, would still represent a real instance of a fact becoming true and

persisting over some period of time; it's just that its duration would be different depending

on whether or not the bus made it.

Fact tokens are referred to as persistence* (after [McDermott 821). The end point of
a persistence is usually rather weakly constrained. That is to say, the end point of a

persistence follows the beginning of the persistence but by how much cannot be determined

in advance. The duration of event tokens will also depend upon context but not quite so

much. It always takes at least 15 minutes and never longer than 45 minutes for me to get
to work on the bus. Just how long depends upon the weather, the traffic, and any number

of other factors. The duration of the (on self bus34) token lasts just until some action

occurs (either I voluntarily exit or am forcibly expelled for one reason or another) which

has the effect of my not being on bun34. The introduction of a second token with schema
(not (on self bus34)) (or alternatively something like (on self ambulance17)) is said
to clip the persistence of an earler occuring token with schema (on self bu•34).

The distinction between event tokens and fact tokens (or persistences) is a pragmatic

one, which will break down if you force it too hard. The programmer is free to choose
whether to represent a phenomenon as an event or a fact. In most cases the choice will be

clear. Persistences are employed for performing default reasoning about how facts change

over time. It's convenient to be able to state that one effect of performing some action is

that some fact will become true and persist for some period of time without having to be

explicit about how long the fact will remain true. The default is simply that it will last just
until something is known to make it false. Events, on the other hand, take a predictable

amount of time. The predicted duration of an event is one of its most important attributes.
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If it takes between 15 and 20 minutes to drive to the airport, then I will want to take that

into account in planning to meet a plane. If I have 3 tasks to finish before leaving the office

this evening, each of which take about half an hour, then I should consider this when setting

up a dinner date. One of the main reasons for choosing one plan over another is that it

takes less time than any of its alternatives. In the next chapter we'll see in more detail how

this distinction between facts and events can be put to good use.

Now we have points glued together with constraints to comprise networks called time
maps. The points have been minimally organized in terms of tokens denoting the occurrence
c,. events and instances of facts becoming true and persisting over time. There is a great
deal more structure that we can impose on these time maps in order to facilitate temporal
reasoning. In the next section I'll speak of complexes of tokens arranged hierarchically and
causally.

2.3 Prediction: projection and refinement

We are constantly modifying and augmenting what we know about events and their effects.

In planning we try to anticipate what might happen in order to plan accordingly. In other

sorts of problem solving we try to make guesses about how processes interact with one

another in order to formulate some sort of explanation that fits with our observations.

- - One of the main operations in temporal reasoning consists of making predictions about

the future, and then seeing how those predictions stand up under further scrutiny. These

predictions generally fall into one of two categories. The first is called refinement and it
refers to taking an event description (i.e., a time token and its associated schema) and

providing a more detailed description in terms of subevents and ordering constraints upon
those subevents. A time map may contain several different descriptions of the same event

where each description provides a different level of detail or perspective on the event. I

might describe the construction of a house in terms of events corresponding to the activities
of the various subcontractors (e.g., rough framing, installation of plumbing and wiring, and

landscaping). If I was the chief contractor for the house and a bank was underwriting the

cost, I might also want to describe the construction in terms of events leading to the release

of funds (e.g., foundation poured, roof completed and shingled, final inspection passed).

Each description is suitable for different reasoning tasks. The secoud sort of prediction is
called projection and it involves additional tokens which describe the effects of an event. An
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effect is a persistence or event token which can be said to be 'caused' by the event token

which is being projected. I'm not going to be very precise about what I mean by "cause"

(but see [McDermott 82] [Shoham 85b]) except to say that events cause other events and

facts and we have rules that stipulate just what effects a given fact type has under what

conditions.

There are many different ways of describing most events, and different descriptions suit

diffent purposes. For instance, the token with schema (transport sell bus38 (hoa

self) (work self)), along with the information that it will take between 15 and 30 min-

utes, will suffice for many routine planning tasks. However, I can provide more detailed

descriptions if need be. One description may include actions that I am required to take in

order that this event proceed smoothly. So I might have tokens corresponding to boarding,

paying, taking a seat, signalling the driver to let me off at my stop, and exiting the bus.

Such a description would also include information about the order in which these subevents

occur and estimates of how long they might take. I could even break each of these down

further. The description of paying the driver might be broken down into finding a token

or the correct change, putting it in the payment receptacle, and getting a transfer slip or

receipt. I could also describe the (transport self bus38 (home self) (work self))

event more in terms of the transporter, bus38 in this case. This might include a more

detailed description of the route taken by the bus (e.g., (translink bus3S Putnaakve-
Station lakden-Line) and (translink buas Ewden-Line Yale-Station)). Such a

description might be useful for reasoning about complications that arise in bad weather

or under unusual traffic conditions. Each of these more detailed descriptions is called a

refinement and for a given token there may be many such refinements.

The refinement of an event token E will typically include:

1. a set of event tokens (Ei, E2 , ... F,) suggested by refinement rules to provide a

more detailed description of E

2. constraints upon the time of occurrence of the tokens in the sets mentioned in (1)

relative to K

3. a better estimate on the duration of E

It is assumed that a good planner will choose a refinement appropriate for the immediate

circumstances and its current plans and goals (obviously this can be an enormously complex

gi
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process). The set of all descriptions of events in a time map constitutes a refinement

hierarchy. One token is inferior to another in the refinement hierarchy if the first participates

in the refinement of the second. In planning, the refinement hierarchy is essentially a
task/subtask hierarchy. A planner like NOAH [Sacerdoti 771 reduces tokens corresponding
to tasks b) choosing an appropriate refinement and then ordering the steps (or subtasks) of

that refinement to avoid problems. This is what is called plan czponson or task reduction.

There is a little more to task reduction than simply choosing a refinement of a task
corresponding to a plan for carrying out that task. One also has to reason about the

possible effects of the events in that refinement. Predictions about the effects of an event

are called projections.

There are two basic sorts of effects that an event might have. The first concerns facts that
will change as a consequence of an event occurring. McDermott [McDermott 82) refers to

this as peristaence causation. One consequence of (transport self buass (home self)

(workc self)) is that I will be in the proximity of (work self).- This might be represented

in terms of a persistence with schema (location sell (work self)) such that the be-

ginning point of this token is coincident with the end point of the token associcated with

(transport self bus38 (home self) (work self)). The other sort of effect an event

can have is to cause another event to happen. If I ask the bus driver for a transfer slip,
then, assuming that the bus driver knows his job, at some time later (usually no longer

than a few seconds) the driver will hand me a transfer slip. If I pull on the bus bell cord
to indicate I want to get off at the next stop then that will result in the event of the bell

clapper striking against the bell.

To review, the projection of an event token E includes:

1. a set of fact tokens IF,. F2 . . F.) representing those facts that change as a con-

sequence of E occurring

2. a set of event tokens (El. E2, ... K,) suggested by causal inference rules to occur
given occurrence of E

3. constraints upon the time of occurrence of the tokens in the sets mentioned in (1) and

(2) relative to E
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2.4 Conditional projection and refinement

Almost all projections and refinements are conditional in the sense that they depend upon

certain facts being true in order to warrant their predictions. These are called antecedent

conditions or sometimes (where it should cause no confusion) just saumptions. Suppose

that I have to call the campus print shop before 9:30 AM if I want to make some changes

to a manuscript that they'll be printing this morning, and suppose that I'm planning to

wait until I get to work to make the call. I predict that the manuscript will be printed with

the last minute changes assuming that I get to work in time. Giving myself some leeway

I estimate that the phone call will take no more than fifteen minutes and therefore that

everything will work out fine if I arrive at the office by 9:15. In planning it is often useful to

make this dependency explicit. This allows me to notice when things are not going well. If

I am delayed leaving the house to catch the bus, I should realize that this might endanger

the plan for having my last minute changes incorporated into the printing. Having been

alerted to this fact I might make the call from home before leaving.

There ant other situations in which it is inappropriate to make certain dependencies

explicit. Pulling the bell cord will result in the clapper hitting the bell only if the bell

cord is attached to the switch that activates the bell. Unfortunately there an, in general,

a great number of antecedent conditions required to (completely) justify such a prediction:

the switch must be operational, the switch contacts can't be corroded, the wires from the

switch to the clapper mechanism must be capable of delivering current, and on and on. For

most of these things we're not likely to have the appropriate information or the time to

gather it. And even if we did, in most cases it would not pay off. A reasonable planner does

not try to prove that every action will have its intended effect. Instead, such a planner sets

up tasks to check that actions result in certain anticipated effects. This is called execution

monitoring ICharniak 85). If an action fails to have its intended effecL, then the planner

can instigate a contingency plan to correct for the failed task. For instance, if you pull the

bell cord and you don't hear the bell ring, then you can yell loudly, run to the front of the

bus, or cast yourself out the window.

Most sorts of strategic planning an such that it is crucial that the planner anticipate

not only the actions of other agents and processes beyond his direct control, but also the

consequences of his own actions for other tasks he is considering. In strategic planning (e.g.,

investment, inventory control, and military planning), it is usually necessary to anticipate

the future in order to determine how a set of plans and predicted events will interact.

................... . . .
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Having got some idea about how a set of plans will work in a given set of circumstances,

the planner may wish to reconsider those plans. In execution monitoring, you assume that
the contingency can be handled when and if it becomes apparent. In strategic planning,

you assume that by the time it is apparent it's too late to do anything about it. There

are activities such that almost everything can be handled at execution time (e.g., moving

a robot arm in cramped quarters). Such a task is best carried out using local information

and feedback [Lumeiski 851. Strategic planning methods, on the other hand, are useful in
situations where an ill-considered action can cause irreparable damage. This is especially

evident in dealing with deadlines and limited resources.

One of the main concerns in the following chapters will be to reason about the depen-

dencies between predictions and their explicit antecedent conditions. In particular I will be
discussing methods for setting up these dependencies and detecting when antecedent con-

ditions are violated thereby undermining belief in the validity of predictions. The sort of

antecedent conditions I am chiefly interested in here involve temporal dependencies. Tem-

poral dependencies in the time map are called protection# after Sussman [Sussman 75]. A

protection consists of a fact type and an interval. A protection is said to have failed if the

fact is not true over the interval. What this generally means is that there is no persistence

with the specified fact type that can be shown to span the specified interval. The system

we will be considering in the following chapters is responsible for setting up protections and

detecting and annotating their failure.

2.6 Reasoning about alternatives

In our discussion thus far, a time map is a partially ordered set of tokens representing events

and their effects over time. Each token represents the result of some projection or refinement

step. These tokens can be thought of as the output of a decision process. They represent

what the program has determined is correct or reasonable to believe about its present,

past, and future. The resulting time map is still a far cry from a complete description of

the world. Obviously there is a great deal that the planner doesn't even want to consider.

But even for those few events the planner does consider, the time map does not necessarily

commit to the order in which those events will occur. You can think of this as saying that all

orderings consistent with the current partial order are equally probable (or perhaps equally

uninteresting), given what the planner currently believes. Keeping the tokens partially

. . * .** .. .u*. .
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ordered means that the planner can leave open or procrastinate about ordering decisions.

While the planner does not have to commit to a given order, it is rather easy to reason

about various orderings by simply restricting the current partial order. When it comes to

projection and refinement decisions, it's not quite so easy to represent the alternatives open

to the planner. If you wanted to reason about two exclusive alternative plans for achieving

the same task you would have to expand the first plan, erase it, and then expand the second.

One alternative to this would be to use some sort of contest mechanism [McDermott 831

[Wilkins 841. The basic idea here is that you have two data bases identical except for the

fact that in one you've expanded the first plan and in the second you've expanded the

second. Of course you don't really have two data bases; you just make it look that way by

marking assertions carefully. You can visit one data base or the other simply by changing

context (e.g., considering only assertions with a given set of markings).

The main disadvantage of the context approach stems from the fact that contexts have

to be explicitly constructed and then selected in order to draw inferences in them or examine

their contents. What we would like is to specify the components' for constructing possible

contexts and then have the system respond to requests by suggesting a context formed from

these components which satisfies the request. This idea extends the functionality of delayed

commitment in task ordering [Sacerdoti 771 to allow procrastination concerning plan choice.

Consider why the idea of using a partially ordered network of tasks and their effects

to represent a plan is so appealing. Suppose that you have an action that you would like

to carry out. And suppose that the action realizing its intended effect depends upon some

conjunction of facts being true over the interval in which the action is carried out. With a
partially ordered network of tasks, finding a suitable interval involves searching through the

space of possible restrictions to the current partial order. The object of such a search is a set

(or set of sets) of additional ordering constraints which, when imposed on the partially order

network of tasks, result in the conjunction of facts being true over the required interval.

Now, we'd like to do something similar for decisions involving alternative predictions.

By not making a prediction at all, we simply put off exploring some part of the search space.

We'd like to represent that part of the search space that we think might be useful without

committing to a specific alternative. The time map management system allows one to

represent and reason about several alternativm simultaneously. I can say, for instance, that

'In planning the components might correspond to various options for achieving tasks. In diagnosis the

components might be alternative explanations for observed phenomena.
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I'll either take the plane or drive my car to Boston. I want to keep my options open. Later,

I might ask the time map if it's possible that I'lI be in time for a seven o'clock concert, and

the time map might respond that yes, but only in the event that I decide to Bly. Similarly if

I wanted to take a side trip to Providence while in Boston it might be necessary that I have

the car there. Of course, not all options are compatible (e.g., I can't both fly and drive

my car) so the time map provides a mechanism for avoiding consideration of impossible or

undesirable combinations of alternatives. The search now is through the space of possible

restrictions and compatible options consistent with the current partial order. This allows

the planner to enlarge the scope of its search space in a controlled manner. A planner

can also reduce this scope easily by committing to a particular alternative and rejecting its

competitors.

A set of compatible alternatives constitutes what is called a parial world description or

PWD. A given time map may contain many PWDs. Partial world descriptions are similar

to Drew McDermott's chroneeta lMcDermott 82] in that both are used to represent possible

courses of events. But McDermott envisioned implementing chronsets. with contexts. In

such an approach, the context corresponding to a chronset has to be explicitly constructed

by the planner. In addition, inference occurs in a single context at a time, and specifying

exactly which context to use is up to the planning system. In the time map management

system, inference proceeds in every partial world description simultaneously. In response

to a query, the TMM tries to find a set of alternatives corresponding to a partial world

description satisfying the query. The planner is also notified when a particular PWD gives

rise to a situation that the planner might be interested in. It's still up to the planner

to specify what alternatives he's interested in. The system, however, takes on much of

the responsiblity for recognizing combinations of alternatives which the planner should be

aware of.

2.6 Summary

As I promised, this chapter is rather short. The main objective was to introduce some

terminology and provide some preliminary intuitions about how the important concepts

fit together. A time map is essentially a partialy ordered set of points. Pairs of points

(intervals) are associated with tokens denoting the occurrence of events and instances of facts

persisting over time. A distinction between event tokens and fact tokens (or persistences)
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was made on purely pragmatic grounds. Event tokens capture the idea that actions and

processes take time while persistences are used to support a default strategy for reasoning

about facts that change over time. The event tokens are organized in refinement hierarchies

so that several descriptions of a given event at various levels of detail (or from different

perspectives) can be represented in the same time map. New tokens are generated in the

process of prediction by either refinement (providing a more detailed description (in terms

of subevents) of an event token) or projection (considering the effects of an event token).

Retrieval from a time map was presented in terms of searching through the space of pos-

sible restrictions to the current partial order. In addition to representing ordering options,

it was argued that it is also useful to represent alternative (possibly exclusive) refinements

and projections for a given event token. This requires that we extend our notion of retrieval

to cover search through possible sets of alternatives.

The number of primitive concepts in this ontology is relatively small, but I think you

will find it surprising just how much work they can made to do. The following chapters will

place these concepts in a computational setting so that we can evaluate their utility and

scope.



Chapter 3

Temporal Data Base Management

3.1 Introduction

This chapter discusses how to go about using the time map management system for temporal

reasoning tasks. The ontology presented in the previous chapter will be carried over into a

notation for temporal queries and a set of procedures for constructing and modifying time

maps. A pseudo-predicate calculus notation is used for clarity and compatibility with an

existing deductive retrieval system. The language presented here can be thought of as a

variant of Prolog [Bowen 811, at least as far as the use of unification and backward chainin

are concerned. Each formula has a specific procedural interpretation provided by die TMM.

Explicating these interpretations will occupy a considerable part of this chapter.

The TMM is presented in the context of a data base management system. It is important

to keep in mind the nature of information contained in a data base concerning events in the

real world. First of all, in the best of circumstances that information is incomplete. There

are:

* things you don't know but could it you had better information (ignorance)

* things that in principle you can't know (indeterminacy)

9 things that you have absolute control over but are as yet unwilling to commit to their

precise unfolding (indecision or indifference)

45
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This incompleteness requires that the TMM be capable of distinguishing between what

is possible and what is necessary given the extent of one's knowledge. It must be able to

assist the user in dealing with the inevitable uncertainty that arises in reasoning about time.

The second thing to remember in dealing with time is that you are bound to make

mistakes. You have to make predictions or commitments about how you think the world

will be. Without commitment there is no basis for formulating plans or extending your

predictions. If, however, you do commit yourself, the predictions you make are likely to be,

on occasion, contravened by new information (e.g., observations or other forms of strongly

supported evidence). It's also quite likely that you will occasionally modify your own plans

so as to invalidate assumptions made in the early stages of plan formulation. Recovering

from this sort of situation typically requires resolving conflicts between plan steps that

were initially believed to be independent. The TMM is constructed to notice when the

assumptions made during prediction and planning are violated by subsequent modifications

to the data base. This provides the basis for a style of reasoning that alternates between

prediction and debugging using a number of shallow deductive steps. The TMM supports

a computational framework called shallow temporal reasoning that facilitates this style of

reasoning.

* 3.1.1 Shallow temporal reasoning and plausible inference

In this introductory section, I want to look at shallow temporal reasoning by breaking it

down into three separate but interrelated components: (1) a data bose or time map, (2) a
strategy for interpreting the information in the time map, and (3) a process for using that

informat ion for planning, diagnosis, text comprehension or whatever.

The time map represents a commitment to how the world was, is, and likely will be.

It attempts to capture the events that are believed to occur and the persistence of their

effects. These beliefs are quite often complexly intertwined, one belief depending on another

that depends upon others in turn, until finally we have beliefs that stand alone, requiring

no justification. The TMM uses these dependencies to maintain a coherent picture of the

* world. An application program makes predictions using TMM utilities, and the time map

* keeps track of which of those predictions are warranted. Of course, the time map may not

always accurately reflect the external world. It may also present a picture of the world that

conflicts with whatever goals and expectations the program using the time map might be
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said to have. Shallow temporal reasoning provides a framework for constructing accurate
%and, to the extent that they are attainable, desirable pictures of the world.

The rules used in constructing time maps represent little packets of information about

how processes behave and the conditions under which plans are likely to achieve certain

desired effects. These rules contain sufficient information for the TMM to set up depen-

dencies that ensure a prediction only in the presence of certain antecedent conditions. It is

this dependency information, coupled with a strategy for noticing and resolving apparent

contradictions, that enables the TMM to present a coherent picture of the world. Unfortu-

nately, even if we assume that the information contained in these rules is essentially correct,
we still have to deal with the fact that our knowledge of actual conditions in the world is

incomplete. A program reasoning about the world must make guesses: commitments as
to how the world actually is and choices about what knowledge to apply in a given set of

circumstances. If the program makes the wrong commitments or applies the wrong rules,
then it will paint an inaccurate and/or undesirable picture of the world. If the program

notices a discrepancy between what it expects or observes and what the time map shows,

then it can take steps to remove the discrepancy by retracting commitments and trying

other rules. The time map is designed to represent the consequences of believing in certain

events occurring in the world.

The preceding discussion points to two specific functions that the TMM should support.

First, in order to maintain a coherent picture of the world, the TMM must be able to keep

track of which facts in the time map are licensed by the dependencies set up in the course
of applying rules. Second, it would be helpful if the TMM could indicate when additional

commitments are necessary in arriving at a desired conclusion. To support these functions
the TMM engages in two forms of plausible inference. The first involves the use of default

assumptions and the second involves the generation of what I call abductee premise.

3.1.2 Default assumptions and abductive premise

A default assumption in the time map is generally something of the form,'As long as it's

consistent to believe P you are licensed to believe (? What this reay maeans is, if I ever have
sufficient reasons for believing (not P), then I will cease believing in Q. I have specified

in advance the precise conditions for suspending belief in Q. In the time map, P typically

corresponds to some fact or conjunction of facts being true throughout an interval of time.

.. . -,-....
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An abductive premise in the TMM is something of the form,*lf it is consistent to believe

P (where P is an ordering relationship between a pair of points in the time map) then go

ahead and do soY This is much stronger than a default assumption; an abductive premise

constitutes a commitment. In data base terms, I am actually asserting P. Generally there

exists no deductive warrant for making such an assertion: The application program is often

simply engaging in wishful thinking. In diagnosis, you might have an explanation that fits

the facts and you want to ask the time map what additional constraints you'll have to

commit to in order for the explanation to actually apply in the current circumstances. In

planning, you often want to know what it'll take for a plan to succeed. Suppose that a

planner has a task that requires manufacturing a shaft of a specified diameter and length.

The planner might have a rule that states that a particular plan p1-435 will work for

manufacturing such a shaft, just in case there is a lathe available for a 15 minute interval

* satisfying whatever deadlines the planner is subject to. To come up with such an interval

the TMM might have to impose some restrictions or additional constraints on the partially

ordered time map. So, for instance, the TMM might state that p1-435 will work, if the

planner is willing to wait until after 3:00. The additional constraint is referred to as an

abductive premise. The process of gathering these additional constraints is built into the

TMM query processing machinery. Whenever the TMM notices, in the midst of processing

a query, that the computation involved in pursuing a particular answer to the query can

proceed only if a certain additional constraint is added to the time map, it asks the program

making the query whether or not the addition of the given constraint is acceptable, and if so,

tentatively accepts it and proceeds with the deduction. If, having added P as an abductive

premise, there is ever reason to believe (not P), then there is cause for alarm. Unlike the

situation involving a default assumption, the TMM has no clear direction for dealing with

the contradiction arising from the addition of (not P). If the calling program ever attempts

* to add (not P), the TMM will not allow it. The TMM will suggest methods for resolving

the contradiction, but it will not take responsibility for resolving the contradiction on its

own initiative.

Many sorts of temporal reasoning (e.g., that involved in planning, diagnosis, or story

* comprehension) can be described in terms of an abductive process [Pople 73] [Charniak 85].

In Section 5.1, I will discuss the connection between abduction and planning in more detail.

For now it is sufficient to understand that in order for planning to proceed, the program

is going to have to jump to conclusions for which it has no deductive warrant. The TMM

assists in this process by suggesting ordering constraints (abductive premises) that enable

0
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the program to apply a given rule (plan, explanation schema, etc.) in a particular time

map.

The information in a time map is organized and represented using a set of special tech-

niques that facilitate answering questions and maintaining a coherent picture of the world.

The programs that use the time map require some strategy for interpreting its contents.

This strategy consists of a set of conventions for reasoning about and extending the inform&-

tion stored in the time map. The conventions tell the time-map routines how to deal with

events whose relative ordering is imprecisely known and persistences representing default

information about how long certain effects will endure. A good deal of the computation in-
volved in planning and problem solving consists of manipulating beliefs: essentially editing

a set of formulae and directing the course of computations used in deriving new formulae.

Some of this editing is performed routinely by the TMM's temporal reason maintenance

system, and some of it requires the assistance of the program employing the TMM. The

interpretation strategy enables both the TMM and the application programs that employ

it to take into account the contingent or default nature of the facts stored in the time map.

The actual process involved in planning, diagnosis, etc. can be described in terms of

making use of what you currently know in order to extend your knowledge. Extension

might take the form of proposing details concerning how to achieve a task, elaborating

upon a given explanation, or projecting the consequences of some hypothesis. This process

is tricky because it requires that the extensions, in addition to being warranted by some

of our prior beliefs, also fit comfortably with the rest of what we believe. We might try

a particular extension only to discover that it conflicts with other beliefs or leads to an

unpleasant state of affairs. In order to explore the repercussions of a given extension I have

to make commitments; without commitment further exploration is impeded. Sometimes

these commitments are tentative: hypotheses entertained for only a brief period of time.

At other times the commitments become deeply entrenched in our view of the world. A

simple example should serve to introduce the reader to some of the issues IIll be addressing

in the rest of this chapter.

Suppose that it's Wednesday afternoon; I've just finished shooting a roll of film, and

I'm anxious to see the developed pictures. I could take the film down to the corner drug

store before it closes and have the pictures back by Saturday. In terms of representing facts

in a time map, the commitment in this case involves adding the constraint that the task of

delivering the film must precede 6:00 PM. I might decide to reject this option given that I
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had hoped to have the pictures ready for a party Friday evening. Instead I might decide

that since I'm planning to go downtown this afternoon, I will take the negatives directly to

the film processor and have them back in an hour. In this case, I constrain the delivery task

to begin sometime after I arrive downtown. I could extend this commitment still further

and constrain the task of retrieving the film to occur before I leave town, thus ensuring the

success of my plan to recover the prints. This seems reasonable given that I want my plan

to succeed. However, there is an alternative that will enable me to keep track of whether or

not my plan is succeeding, while at the same time entertaining other plans (possibly more

important) that might conflict with getting the prints home for dinner. To monitor my

plan, I would have the TMM set up certain dependencies that would determine whether

or not I will successfully return from the city with the prints. So, for example, I would

represent in the time map the fact that my plan for returning home with the finished prints

. depends upon my remaining in the city at least one hour after dropping the film off at the

processor.

Setting up these dependencies involves establishing default assumptions. These defaults

explicitly establish the conditions for my suspending belief in the success of my plan for

getting the prints. The advantage of setting up defaults is that it makes it easy to consider

exactly what consequences are involved in considering other possibly conflicting plans and

predictions. Suppose that the trip downtown gets delayed, and I decide to leave before 4:30

to avoid getting caught in traffic. Adding the fact representing my leaving the city before

4:30 would cause the TMM to notify me that my expectation of having the prints home for

dinner is in danger. In addition, the TMM can inform me of what additional beliefs and

commitments are responsible for endangering my plan. It's quite possible that I'd rather

return to town tomorrow than endure rush hour traffic. The default approach makes it easy

to explore the repercussions of adding new predictions to the time map.

In this chapter I am primarily interested in describing the basic functionality supported

by the time map management system and in providing examples of how this functionality

can be put to work in actual programs. I will show how temporal data dependencies are

set up in the course of querying the data base (constructing hypotheses) and adding new

information to the data base (making predictions). The result is a natural extension of

the data dependency techniques developed for static data bases that enables one to reason

effectively about temporalized information. To begin with, however, I want to present an

overview of the deductive retrieval system upon which the time map management system

.'.,-.: ., -' .-r'; . -..- :a', ,- 4 ,.-n ,' .. . . *.* " .. ." . °'-4 '"4 " ' - " " "- - " - ' " " "
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3.2 DI viwrtive Retrieval Systems

r ,# ,- *wnbed t this dissertation extend traditional deductive retrieval sys-

i ns md tber mom, ated predcaste-caculus data bases to handle a wide class of temporal

ufemb. i The T44 is implemented as a extension (or temporalized version) of the de-

ductive retrevai 4etm DUCK [McDermott 85] which follows in the tradition of MICRO.

PLA\ NER ISussma 711 CONNIVER [McDermott 731 and AMORD [deKleer 78]. In or-

der to understand bow to use the TMM, it is important that the reader understand certain

thinp about the underlying deductive retrieval system. This section consists of a short

tutorial on DUCK to provide the reader with the necessary background material for un-

derstanding the rest of the chapter. I will assume some familiarity with deductive-retrieval

and logic-programming issues such as unification and backward chaining. Since Prolog is

perhaps the most accessible logic-programming system, I will make frequent comparisons

with the Prolog language IBowen 811.

The discussion of deductive retrieval issues can be roughly partitioned as follows:

1. a set of techniques for constructing and maintaining a data base of predicate calculus

formulae corresponding to faet or ground assertions (predications without variables)

and rule. (quantified formulae) used for deducing additional facts

2. a set of deductive methods for answering questions and noticing consequences of the

information contained in the data base

Much of the discussion concerning these issues will be cursory, as it deals with issues that

should be familiar to most readers. Readers who need more background are urged to con-

sult the DUCK manual [McDermott 85] or any of a number of good introductory Al texts

(e.g., [Charniak 80] [Nilsson 80]). My objective is to move quickly through the fundamen-

tals, pointing out certain syntactic conventions used by DUCK, and raising issues that will

arise in later discussions concerning temporal data bases. Section 3.2.3 provides a rela-

tively detailed description of the techniques employed in DUCK for keeping track of the

reasons for believing items stored in the data base. These techniques are incorporated in a

................................ .. . . . .
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general deductive strategy for noticing and responding to changes in the data base. Under-

standing this strategy is important for effectively using the TMM and making sense of the

implementation issues described in Chapter 4. I'll begin with some notational preliminaries.

3.2.1 Notation

A LISP-style notation will be used for predicate calculus formulae. All formulae are of the

form (q ...), where q is a function, predicate, or connective, and the '...' corresponds

to the arguments of a predicate or function or the subparts of a composite formed with a

connective. Variables (notated ?name) are universally quantified unless otherwise stated.

A substitution (or set of variable bindings) is notated as ((variablenamce valuej) ...

(variablename. value.)) (e.g., unifying (too ?x ?y) with (foo Fred Sally) results in

the substitution { (x Fred) (y Sally))). The connectives and and or have their standard

interpretation. Instead of using not, the negation-as-failure operator thnot will be used

(i.e., (thnot ?p) succeeds just in case ?p fails). In places where one would normally use if,
one of <- or -) will be substituted, where the former indicates a standard backward-chaining

rule and the latter a forward-chaining rule. A formula such as (<- P (and Qi ... Q6))

(equivalently in Prolog *P :- Q. ... Q,.') is interpreted as saying. to prove P, prove Q,

through Q. with appropriate substitutions made via unification. The formula (-> P Q) is

interpreted as: if P is added to the database, add Q as well. Variables appearing in formulae

are declared to be of a given type using the constructs define-predicate and define-

function. Types will appear in upper case, all else in lower case. The initial types include:

FINUM (either an integer or a special symbol like *pos-ia* and *neg-iul* (for plus or

minus infinity)), PROP (basically any finite non-circular list structure), and OBJ (all types
are a subtype of 015J). New types will be introduced as needed. Predicates are defined using

a schema in which the arguments are replaced by a type. For instance (define-predicate
(c FIXNUX FIXI=) ) declares < to be a predicate of arity 2, both of whose arguments are

of type FIXNUK. Functions are defined similarly, except that the first element in the schema

following the function name is the type which the function returns and the second element

is a list of the types of the function arguments. So (define-function- {. FIXNUX (FIXIIU

FIXNUM))) defines + to be a function of two FIUNU arguments that returns a FIX=.

Lists are notated using the syntax (i.tem.-in-the.it-seperated-by-.paces> (equivalent

to the Prolog [item.-in-the-list..eparated-b .eommotl). So the list consisting of the terms

fred and sally becomes 1f red sally (or [fred.sally] in Prolog). The empty list

.
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is just I<>. There are also means of decomposing lists using unification. One can break

2" a list consisting of one or more elements into its first element and the list consisting of

the rest of the elements using !<?x I& ?y>, which is equivalent to [IIY] in Prolog. That

is to say ?x (X in Prolog) will unify with the first item in the list and ?y (Y in Prolog)

will unify with the list consisting of everything else in the list. For example, :(?x ! & ?y>

unifies with ! red mary sally with substitution ((x trod) (y ! (mazy saily>)), and

it unifies with !(fred> with substitution ((x fred) (y !>)), but it doesn't unify at all

with ! 0.

3.2.2 Deduction involving forward and backward chaining

Most deductive retrieval systems separate the deductive process into two distinct opera-

tions on the data base: processing queries and performing forward inference. The former is

often referred to as backward chaining. Coupled with unification, backward chaining is the

primary instrument of procedure invocation (Horn clause resolution) in systems like Prolog

[Clocksin 84]. The latter is called forward chaining and is often associated with produc-

tion systems or pattern directed inference systems. OPS5 [Forgy 81] encourages a style of

programming that employs this sort of deduction. In many systems (e.g., [McDermott 73]

[Sussman 711 [deKleer 78]) forward and backward chaining are combined in some sort of a

deductive strategy. Such strategies are necessary to ensure that certain routine deductions

are performed quickly using a minimum of storage [Moore 751.

Utilities for performing forward inference can be further divided into two classes: those

that support logical implication and those that support a more general sort of inference

sometimes given the unwieldy title of pattern directed procedure invocation. The former

allows one to say, for instance, that whenever one asserts P one can assume Q (i.e., (-, P

Q)). The latter is used to instigate a computation in the event that a proposition is added

to or removed from the data base. For example, one might have a rule that says, whenever

a new employee is entered into the data base, check to see if there are any other employees
with whom he can share a ride to and from work (i.e., (- (euployee-record.?utae

?parameters) (call (check-car-pool ?nae ?parameters))) where call is a pseudo

predicate that informs the deductive retrieval system to invoke LISP and check-car-pool

is a LISP function that performs some complicated search).

Neither forward chaining nor backward chaining are adequate alone. It is clear that

forward chaining alone would not suffice. For a simple rule like (- P Q) where assertions

,, • . - • • . .. • . . . . .. ..• . . .

... , . ,, , .,,..,. ,.:,.: .. :.. ::,, , , ... ,i ., .. ., .. _.,,1. ... ,...,.,.........,.. ....... . ...



CHAPTER 3. TEMPORAL DATA BASE MANAGEMENT 54

of the form P were the only sort added by the user, you would double the space requirements.
For a transitive rule you would increase storage by a factor of n'.* And in general, relying
upon forward chaining alone would increase storage requirements beyond the capacity of
any finite store.

One reason that backward chaining rules would not suffice stems from the sort of com-
putation required for dealing with events in the real world. Information comes in bits and
pieces. The implications of that information may only become apparent when some last cru-
cial item comes in. Suppose that you have a system for monitoring a nuclear reactor. The
system has a rule that says something to the effect, "if the coolant in the containment vessel
is below a certain threshold, and the control rods are raised, then the reactor is in a po-
tentially dangerous state.' This rule might have the following form as a backward-chaining
rule:

(-(critical-situation ?reactor)
(and (< (coolant-level (containument-vessel ?reactor)) thresholdl4)

(control-rods-raised ?reactor)))

In order to detect a potentially dangerous situation the system would have to repeatedly

make the queries (critical -situation reactori), (critical-situation reactor2),

etc. There may be many rules for deducing that a reactor is in danger and each of these

would have to be repeatedly tried, I general, the cost of monitoring a complex system us-
ing backward chaining alone would be exorbitant. One reasonable alternative is to monitor
certain key factors. These factors would serve as triggers for instigating further investi-
gation. The "instigation' is accomplished using forward chaining; the sinvestigation' is
carried out by backward chaining. Combining the two techniques of backward and forward
chaining can result in powerful deductive strategies for integrating new information and
noticing important developments.

A computation in a logic-programming system like Prolog can be described in terms
of answering questions [Clocksin 841 (or, as I frequently put it, processing queries). I
Prolog, you ask a question by typing a goal (generally a form containing variables but no
connectives) or a conjunction of goals to the Prolog interpreter. The system tries to satisfy
a goal by searching in the data base for a fact that unifies with the goal, or, failing that,
by backward chaining (goal reduction) using the rules in the data base. An answer consists
of a substitution for the variables in the query. A given query may have no answers or
it may have many, depending upon the facts and rules in the data base. A query is said
to "succeed' just in case it has at least one answer; otherwise it is said to afal'. DUCK
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If the data base consists of:
(string-quartet Juilliard)
(string-quartet Guarneri)
(cellist Joel-Krosnick Juilliard)
(cellist David-Soyer Guarneri)

then:
(fetch '(and (string-quartet ?q)

(cellist ?c ?q)))

evaluates to the list of answers:
({(q Juilliard) (c Joel-Kronick)}
{(q Guarneri) (c David-Soyer)})

Figure 3.1: Invoking backward chaining from LISP

also has an interpreter that you can invoke to process queries, but DUCK encourages a

style of programming that blends logic-based computation (or deductive retrieval) and the

applicative style of programming common to LISP. The LISP function fetch takes a single

argument that evaluates to a goal or conjunction of goals'. This function returns a list2 of

answers. Figure 3.1 provides a simple example. DUCK answers can be manipulated just

like any other LISP data object, and we'll make use of this fact to control deduction in the

TMM. The function fetch allows us to take advantage of Prolog-like deductive retrieval

capabilites while in LISP.

There are computations involving deductive retrieval systems in which the data base

does not change over the course of the computation. But in many applications it is conve-

nient or even necessary to modify the set of facts and rules as part of the computation. This

might be done for efficiency or it might be done simply because new information becomes

available while the program is running. Prolog handles this by having predicates (asserta

and assertz) that can be used to add facts and rules to the data base during backward

chaining. DUCK has a predicate assert which serves the same basic function and a LISP

function add that allows one to add facts and rules from LISP. Assert and add provide

'Both DUCK and Prolog queries can contain conjunctions and disjunctions of goals, but I've ignored this
to simplify the discussion.

'it's actually what is called a stream or pemerstd Uis of answers. In simplified terms, this means that only

the first item on the list is actually computed and the rest are generated only on demand, as in 'lazy
evaluation'.

Z........................................, ... .... .. "
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the user with another method for performing forward chaining. Facts and rules can also

be removed or eraed from the data base. In Prolog this is accomplished by using retract

and in DUCK by using erase.

In both Prolog and DUCK, exactly what is asserted or added to the data base will

"depend" on the current answer or state of the computation. In Prolog, this dependency
can be stated totally in terms of the variable bindings (substitution) in force at the time
the assertion is encountered in the computation. As an example let's assume that the data

base consists of just the fact (brother-of Cain Abel). In the following query:

(and (brother-of ?x ?y) (assert (sibling ?x ?y)))

the assertion will occur in the context of the substitution { (x Cain) (y Abel) ), resulting in
(sibling Cain Abel) being added to the data base. There is actually a more complicated

implicit dependency in this; it would seem that the assertion (sibling Cain Abel) should

somehow depend upon the assertion (brother-of Cain Abel). If the latter assertion is
removed from the data base, then there seems to be no warrant for believing former. In
DUCK, this dependency is made explicit in what is called a data dependency network.
Assertions that are no longer justified are marked as such and in certain circumstances
actually removed from the data base by what is referred to as a reason maintenance system

(RMS).

3.2.3 Reason maintenance and data dependency networks

N The technique of recording data dependencies to keep track of the connection between
inferences has been around for a long time. It has beeni used to assist in reconfiguring
deductive retrieval data bases [Davis 821, to provide explanations of a program's behavior

[Swartout 831, and to monitor the continued validity of abductive hypotheses to direct

search in reasoning about physical devices [Stallman 791 [deKleer 84) [Forbus 841. Some
systems use the dependencies simply to record a trace of the deduction. Various programs
can then use this trace to answer questions, make further inferences, debug the data base,
or whatever. Data dependency records can also provide the basis for some general deductive

strategies. In such strategies the data base and the dependency records are quite closely
tied to one another. The content of the data base is often a matter of interpretation in that
the data base may contain a record of a proposition, but only to note that the proposition is
currently not believed and that some other proposition depends upon it not being believed.
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Usually the data base, the dependency records, and the deductive strategy are tied together

in a system for managing the items stored in the data base. Such systems are said to perform
"reason maintenance" in that they maintain some useful invariant (or set of invariants) with
respect to the contents of the data base. An example of an invariant might be that for all
propositions for which there exists a record in the data base, either the proposition or its
negation is marked as "true in the world'. Now obviously by itself this invariant wouldn't

be of much use, but coupled with some sort of deductive invariant (e.g., enforcing modus
ponens: if the beliefs corresponding to P and (if P then Q) are both true in the world
then Q is true in the world) it might form the basis for performing propositional deduction

[McAllester 80].

There are a number of reason maintenance systems in use today (deKleer 841 [Doyle 79]
[McAllester 80) [McDermott 83]. The system described here is similar to that of Doyle
[Doyle 79). The system manipulates a data structure referred to as a data dependency

network. This network is (at least conceptually) separate from the data structure used by
the data base system to store and index data (e.g., a discrimination net). The network
consists of nodes called ddnodee (for data dependency node): one node for each datum of

interest to the user.

The ddnode and the item it refers to are generally spoken of interchangeably. The

paradigmatic case is the ddnode associated with each assertion in the database, but, in
general, any explicit belief of the program must be associated with a ddnode, and any
ddnode must have a propositional content that the program either believes or does not at
any given time. Connecting all the program's beliefs in a data dependency network allows
the RMS to enforce consistency among the beliefs. The connections between various items
of data in the network are described in terms of justifications. A justification for a ddnode

no consists of a conjunction of other ddnodes in the following form: ({an, ...ni) {hi+i, ...n))
where n, through ni are referred to as in-jutifjer. and ni+l through ni are called out-
justifiers. An assertion corresponding to a ddnode with the empty justification (i.e., ({) {}))
is said to be a premise; it's believed unconditionally. Justifications are used to capture
conditions for belief and thus the node no is said to depend upon belief in nn,...,ni and

absence of belief in ni+i, ..., ni . As an example suppose that n, corresponds to the belief

that the house at 129 Rochambeau Avenue is located within the area known as East Side

Providence, n2 to the belief that houses in East Side Providence generally increase in value,
ns to the belief that the house at 129 Rochazbeau is structurally unsound, and no to the
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n1
"" n2 + no

114 *

Figure 3.2: Example dependency diagram

belief that the house at 129 Rochambeau is a good investment. If no has the justification

(1il, n2} {n3)), then this would be interpreted as saying: If I believe that houses on the East
Side have high resale value, and the house at 129 Rochambeau is in the East Side and as
far as I know has no structural defects, then I believe that the house is a good investment.

In the graphical representation of dependency networks, ddnodes are shown as boxes and

a justification is depicted as circle with lines drawn from the circle to the justifiers (the lines
are labeled + and - for in-justifiers and out-justifiers respectively) and an arrow pointing to
ddnode being justified. To complicate the example involving the house at 129 Rochambeau,
suppose that n, and n 2 are premises and n3 has the justification ({n4){)) where n4 has

no justifications and corresponds to the belief that the house at 129 Rochambeau has
severe termite damage. Figure 3.2 shows the resulting dependency diagram for the network

involving the house at 129 Rochambeau.

In addition to recording the reasons for believing something, it is also important to keep
track of which things are currently believed. Deductions (such as forward and backward
chaining) are generally performed using only items (rules and ground assertions) that are

believed. Also it is often critical that the program using the reason maintenance system
be notified of specific changes in the status of selected beliefs. Each ddnode has associated
with it a label which is used to keep track of the status of the corresponding datum. In a

Doyle-type TMS, the label for a ddnode is a boolean value, one of IN or OUT. IN meant
that the corresponding datum is believed and OUT meant that it's not believed. In the
latter case the datum associated with the ddnode was essentially hidden from the deductive
retrieval machinery; it was, from the user's point of view, not present in the data base. All
premises are given the label IN. A ddnode with no justifications is said to be an assumption

and is given the label OUT. The labels for all other ddnodes have to be computed. The
primary objective of a reason maintenance system is to find a consistent and vell-founded

: . .... . . .. .. ..- . . ,. .. . . . . .... .. ..-... .. . .-.-. . . .- . .. . . .. ... - -... - - . . . . .
.... ,-,,,, ---,, ,-= I ,'., ,t ,,.,,L ,.'m S, ....,,...-.......l.,,.. ..... . .. . .. .
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assignment of statuses (IN or OUT) to all the ddnodes in the network which are neither

premises nor assumptions. Intuitively a status assignment for a node is consistent if it

follows from its justifications. In Doyle's system this requires that the label for a ddnode

be IN ift at least one of its justifications is composed of in-justifiers with IN labels and

out-justifiers with OUT labels. Intuitively a status assignment is well-founded if every IN

ddnode can be shown to be grounded in premises. A ddnode with label IN is grounded (in
premises) if it is a premise or it has at least one justification such that each in-justifier is
either grounded or a premise and all the out-justifiers are labeled OUT.

When a justification is added or removed, the consequences of the change have to be

propagated throughout the data dependency network. This involves recomputing the labels
of some subset of the set of all ddnodes. The algorithm used in the Doyle RMS is discussed

in [Charniak 80] and I won't repeat the discussion here. Suffice it to say that this algorithm

finds a consistent and well-founded assignment of statuses (IN or OUT) for all ddnodes

in the network, and does so in an efficient manner. In the dependency network shown in

Figure 3.2, the nodes no and ns have to be computed. As I have described the situation

they would be assigned IN and OUT respectively. If n4 ever became IN for some reason,
then n3 would become IN and no would become OUT. The algorithm for updating the

dependency network also allows us to determine which ddnodes have changed status as a

result of the most recent modification to the dependency network. The indexing machinery

is responsible for seeing to it that all justifications for believing a given datum refer to a

unique ddnode. One reason for uniquely identifying beliefs is to simplify responding to

changes.

Each data dependency node serves as a location in which to store responses to specific

changes in the status of that node. These responses, called signal functions, are executable

objects which are "run' whenever the label for the ddnode changes in some predefined way.

The ddnode gives you a handle on a given belief. If the dependency network is modified

in any way, the RMS can easily determine the set of ddnodes that might possibly have

changed status. It can then check to see which of those ddnodes have changed status and
what the nature of those changes are by comparing the newly computed label with the

previous one. Signal functions are used for implementing what are called change.driven

interrupts to support a style of programming that has been quite useful in developing the

TMM. I'll return to this shortly.

The reason maintenance system actually employed by the TMM was developed specifi-

• . o-*.
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cally for reasoning about alternatives. It is based on deKleer's assumption-based approach

deKleer 84) and McDermott's update algorithm for handling contexts [McDermott 83).
This hybrid RMS behaves identically to Doyle's in the absence of what are called gating

objects: special data structures used for reasoning about alternatives and disjunctions. In

this preliminary discussion, I have chosen to focus on the functionality of the simpler Doyle-

type system. In the hybrid RMS, labels are somewhat more complicated. I will introduce

further complications as they are required.

There is no way to directly force disbelief in a datum in the face of justifications to

the contrary. That is to say, the only way to guarantee not believing in something is to

remove the justifications supporting it; you can't override an existing justification. One

can, however, force belief in the negation of some datum. The system being discussed here

does not keep track of truth values (as does McAllester's system [McAllester 801). It is

quite content to have two ddnodes, one for P and a second for (not P), and record that

both are currently believed. The system can be designed to notice and respond to such

logical contradictions [Doyle 79] but that is not its primary purpose. If you are interested

in performing propositional deduction, then McAllester's system is the better choice as it

was designed expressly for this purpose. The need for such a deductive capability will come

up in our discussion of the implementation of the hybrid RMS (see Section 4.6 in Chapter

4), and I'll speak a bit more about propositional deduction at that time.

Data dependency systems of the sort we are discussing here an used for incrementally

updating a set of beliefs upon the addition or removal of new beliefs or justifications, and

then noticing and responding to specific changes in those beliefs. In principle there is no

need to remove ddnodes as their corresponding beliefs can be rendered ineffectual by simply

manipulating justifications. For example, if you want to ensure that you don't believe P,

then remove all the justifications from the ddnode corresponding to P. As was evident from

the example in Figure 3.2, it is often necessary to keep around nodes corresponding to

assertions that an OUT just in case later deductions cause those assertions to become IN.

In practice most systems employ some strategy for getting rid of ddnodes that have no

bearing on beliefs the user is concerned with. This is done, however, to reclaim storage and

not as a means of manipulating belief.

To review:

- The data dependency system can be thought of as a means of maintaining a set of

beliefs.

........... .. . .. . *. .................. . . ..-. ....... ....
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* One is generally interested in detecting and responding to specific changes in a set of

beliefs.

To make this concrete we have to be clear about:

* how the connections between beliefs (justifications) are set up

a how the "belier status of a datum might change

e how you go about detecting and responding to such changes

The next few subsections will attempt to answer these questions, thus paving the way
for an example illustrating how this functionality might be put to use. The discussion will
be somewhat informal. The object is to motivate. For more detailed discussion about data
dependencies in general see [Doyle 79] or [Charniak 80].

3.2.4 Establishing inferential connectivity

I've already mentioned two methods for performing deduction in deductive retrieval sys-
tems: forward and backward chaining. In addition to these, DUCK allows a third type of

deduction which I'll refer to as program-mediated deduction. As I suggested above, Forward
and backward chaining always occur in some sort of "context', including a set of variable
bindings. Program-mediated deduction involves the use of programs that directly manip-
ulate this context, setting up data dependency justifications, modifying variable bindings,
and controlling forward inference. Before I explain program-mediated deduction, I want to
explain what these "contexts" are and how they are created and employed during backward

and forward chaining.

In the TMM, the context of a deduction is an object of data type ANS (for "answer)
that consists of a set of variable bindings and a set of ddnode/support-type pairs associated
with the steps in the deduction thus far. For our purposes, a support-type is just one of

the set I*,-), where 4 means that the deduction depends upon the ddnode being believed,
and - means that the deduction depends upon the ddnode not being believed. This set of

ddnode/support-type pairs attempts to capture why or under what conditions the current
answer should be believed to be true. Figure 3.3 shows how ddnode/support-type pairs are
incorporated into the answers returned by the function fetch. The machinery responsible

was
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If the data base consists of:

ddnode: corresponding datum:
n1 (string-quartet Juilliard)
n2 (string-quartet Guarneri)
n3 (cellist Joel-Krosnick Juilliard)
n4 (cellist David-Soyer Guarneri)

then:
(fetch '(and (string-quartet ?q)

(cellist ?c ?q)))

returns:
(({(q Juilliard) (c Joel-Krosnick)} {(* nl) (4 n3)})
({(q Guarneri) (c David-Soyer)) {(+ n2) (+ n4)}))

Figure 3.3: Answers containing data dependency information

P1

a. Dependency network created by (and P2 ... P. (assert Q))

(not P) - Q

b. Dependency network created by (and (consistent (not P)) (assert Q))

Figure 3.4: Dependency diagrams for backward chaining examples
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for forward and backward chaining sees to it that the current anwver (the value of arm*, a

global variable of data type ANS) is modified to reflect the current state of the deduction.

When an assertion occurs, the system finds or creates the unique ddnode associated with

that assertion. It then installs in that ddnode a new justification formed using the set of

ddnodes in the current answer (in-justifiers consisting of ddnodes of support type + and

out-justifiers those of support type -). Assertions are allowed to occur during backward

chaining. So in backward chaining on the conjunctive goal (and P1 ... P. (assert Q)),

a system handling data dependencies should ensure that the ddnode corresponding to Q has

a justification that depends upon on the ddnodes associated with deducing P1 ... P,

(Figure 3.4.a shows the dependency network constructed assuming that each of P1 through

P. correspond to ground assertions in the data base). There is also the need to handle

queries that make use of the "consistent" (nonmonotonic negation-as-failure) operator. So

assuming that P cannot be zieduced from the current contents of the data base, a query
of the form (and (consistent (not P)) (assert Q)) should succeed, resulting in the

ddnode associated with Q having a justification with an out-justifier corresponding to the

ddnode associated with P (see Figure 3.4.b). Figure 3.5 provides a somewhat frivolous
example' illustrating how the system sets up dependencies during backward chaining. For-
ward chaining behaves similarly. If P is asserted and there is a rule (-) P Q), then the

ddnode associated with Q should have a justification which includes the ddnodes for P and

S(- P Q).

"Program-mediated deduction" ref'ns to deduction done inside code using language

constructs for forward and backward chaining (e.g., fetch and add). When an assertion

is made, it is justified, intuitively, because the process has reached a certain point in the
program, with the variables bound in a certain way. Often, it is possible to identify explicit

reasons for the process to have reached this point, such that an assertion made at this point

ought to depend upon those reasons. Consider the following code executed with the data

base of Figure 3.6:

(cend ((fetch '(and (string-quartet ?q)
(list-of-members ?q ?1)
(member Robert-Mann ?1)))

(add '(classical-musician Robert-Mann))))

*This example was inspired by a maxim which I first heard from Ken Forbus: namely, that the true test
of sophistication for an urban center is an eatery that sells cappuccino at reasonable hours and lots of
readily available computing power. It could be that his statement was made in jest but its predictions
often agree with those made by other independent measures of sophistication.

..........o-.. . .
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Suppose that the data base contains just the following:

ddnode: corresponding datum:
nl (C- (civilized ?urban-area)

(and (instance-of ?establishment restaurant)
(located ?establishment ?urban-area)
(serves ?establishment cappuccino)))

n2 (instance-of Consiglios restaurant)
n3 (located Consiglios NewHaven)
n4 (serves Consiglios cappuccino)

If the following conjunctive goal is encountered in backward chaining:
(and (civilized ?place)

(consistent (available ?place significant-computing-power))
(assert (sophisticated ?place)))

then the system should create a new ddnode nS corresponding to:
(sophisticated NewHaven)

with justification:
(nl, n2. n3, n4}{n6})

where n6 corresponds to the ddnode:
(not (available NewHaven significant-computing-power))

The resulting dependency network is:

al nl n3 n4 n6

,.. n5

Figure 3.5: Constructing a justification during backward chaining

Data base contents:

ddnode: corresponding datum:
nl (string-quartet Juilliard)
n2 (list-of-members Juilliard !<Earl-Carlysu Robert-Kan

Samuel-Rhodes Joel-Krosnick))
n3 (<- (member ?x !Wy I& ?z>) (or (:u ?x ?y) (member ?x ?z)))

Figure 3.6: Data base for demonstrating program-mediated deduction techniques

. .
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The assertion (clmssical-musician Robert-Mann) is added to the data base because

Robert Mann is known to be a member of the Juilliard string quartet. It should be made de-

pendent upon the assertions (string-quartet Juilliard) and (list-of-members Juil-

liard ! <Earl-Carlyss Robert-Mann Samuel-Rhodes Joel-Krosnick>) and the rule used

by the deductive system to determine that one term is a member of a list of terms. Objects

of data type ANS provide us with the means for keeping track of the reasons why a process

has reached a certain point in a program. The following:

(fetch '(and (string-quartet ?q)
(list-of-members ?q ?1)
(member Robert-Mann ?)))

would return:

(({(q Juilliard)
(1 :<Earl-Carlyss Robert-Mann Samuel-Rhodes Joel-Kroanick>))}
{( n1) (u n2) (, n3))))

in the data base of Figure 3.6.

All deductions take place in the context of the current answer ans*. The answers
returned by a "fetch" are said to augment the current answer. If we want an assertion to

be dependent upon a particular "fetch', then we will have to bind ans* to be the value

of some augmented answer returned by the "fetch". The scope of an answer refers to the

time during which that answer is the value of a=*. For our example involving the Juilliard

quartet, the dependencies would be handled correctly by the following:

(let ((answers (fetch '(and (string-quartet ?q)
(list-of-members ?q ?1)
(member Robert-Mann ?1)))))

(cond (answers
(bind ((ans* (car answers)))

(add '(classical-ausician Robert-Mann))))))

That is to say, the system will create a ddnode corresponding to (classical-musician

Robert-Mann) with justification ((i. n2. n3}W).

The above code can be simplified using various LISP macros designed for that purpose.
In a call of the form (for-first-answer (fetch query) code), if the list returned by the

fetch is empty, the call returns with O; if the list is not empty, then ans is bound (locally)

to the first augmented answer in the list and the code is executed returning whatever the

........ . . . . .. . .
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code returns. In (for-each-answer (fetch query) code), the current answer is repeat-

edly bound to as many augmented answers as the fetch will allow, and the code is executed

for each answer. The for-each-answer macro is generally used as follows:

(for-each-answer (fetch 8ome-query)
assorted-LISP-code

(add some-assertion)
more-ass orted-LISP-code)

Each answer in the list returned by fetch is bound to ans* in turn, and add is called. Add
makes the necessary substitutions and sets up the requisite dependencies. Suppose that the

data base contains just (string-quartet Juilliard) and (string-quartet Guarneri)

and the following code is executed:

(for-each-answer (fetch '(string-quartet ?q))
(add '(repertoire ?q Mozart)))

Following execution, the data base will also contain (repertoire Juilliard Mozart)

and (repertoire Guarneri Mozart), such that (repertoire Juilliard Mozart) de-

pends upon (string-quartet Juilliard), and (repertoire Guarneri Mozart) depends

upon (string-quartet Guarneri).

Notice that under certain conditions, the above code performs the same function as the
forward chaining rule (-> (string-quartet ?q) (repertoire ?q Mozart)). The main

difference concerns timing. In the case of the for-each-answer version, if after execut-

ing the code you add (string-quartet Nelos), then (repertoire Melos Mozart) will

not be added to the data base. There are many cases in which this is exactly what you
want. For example, suppose that the data base is consistent with several hypothetical sit-

uations, only one of which can actually occur. In such a case, the program will have to
be careful to add only those assertions that follow from the hypothesis selected as best4 .

As we'll see, this sort of carefully controlled deduction plays an important role in temporal

reasoning. I will reserve the term controlled forward inference to refer to that class of de-
ductions characterized by the pattern (for-each-answer (fetch ansecedent-conditions)

(add consequent.predictiona)).

* In the data base shown in Figure 3.5, the following two LISP fragments result in setting

up exactly the same dependencies.

"The program might also choose to explore several alternatives at the same time using a context mechanism
[McDermott 831, but the deductions still have to be tightly controlled in selecting a set of candidate
hypotheses and keeping their corresponding consequences separate.

.....................................'.i"..i l - l iil l
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(fetch '(and (civilized ?place)
(consistent (available ?place significant-computing-power))
(assert (sophisticated ?place))))

(for-first-answer
(fetch '(and (civilized ?place)

(consistent (available ?place signiticant-computing-power))))
(add '(sophisticated ?place)))

In this case, there really is no advantage to using one rather than the other. If, on the

other hand, a significant amount of computation is more conveniently or efficiently carried

out in LISP, then it is often advantageous to use constructs like for-each-answer to jump

back and forth between LISP and the deductive retrieval routines provided by DUCK. In

general, program-mediated deduction provides a clean and versatile means for carefully

controlling deduction, while the logic-programming notation is more concise in relatively

simple situations. For temporal reasoning, such simple situations are rare, so most of our

examples will employ program-mediated deduction.

There are also ways of selectively modifying just the set of ddnode/support-type pairs

in the current answer. The forms (answer-support (* '(foo bar)) code) and (answer-
support (- '(foo bar)) code) are used to construct a new ANS formed from the bindings

of the current answer and the ddnode/support-type pairs of the current answer, plus a new
pair consisting of the ddnode associated with (too bar) along with the support types +

and - respectively. The current answer is then bound locally to this augmented answer and

the code executed.

These techniques and functions constitute the primary method for the user to construct

new justifications (of course one can also get down and grub around in the data structures
of the underlying data dependency system, but that is generally discouraged). The user still

needs some means of retracting previous justifications. As I am not aware of a particularly

clean interface for selectively removing justifications, we will rely upon a single rather gross

but effective method for modifying dependency structures: erasure. Erasing an assertion

(and indirectly its associated ddnode) is accomplished by removing all of that ddnode's
justifications; effectively removing any warrant for belief in the assertion. Erasure is the
normal means for forcing disbelief in a particular assertion. A call of the form (erase ' (too

bar)) will find the ddnode corresponding to. (foo bar) and remove all of its associated

justifications.

Whenever forward chaining occurs, either by using rules of the form (-) P Q) or via

S. .
. . . . . . .
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other means of making assertions, the RMS is invoked to (re)compute the status of all

possibly affected ddnodes. Now we can consider how to go about detecting and responding

to changes in the status of ddnodes that occur during this process of updating.

3.2.5 Detecting and responding to changes

There are two main issues concerning the detection and response to changes in the status of

ddnodes. The first concerns what sort of changes one has to be aware of. The second issue

concerns the order in which the responses should be made. If there are several changes to

be dealt with the order can be quite critical.

In a Doyle-type system, the sort of changes that can occur are rather simple. A ddnode

label can toggle between IN and OUT and that's the extent of it. (In reasoning about

alternatives things get considerably more complicated but that can wait until Chapter 4).

The other issue in responding to changes concerns the order in which responses are

made. It is often the case that certain operations on the data base cannot be reliably

or efficiently performed unless the data base satisfies some property. It is generally quite

difficult to predict the extent of the changes that will result from making modifications

to a dependency network. The signal functions for ddnodes whose labels changed are

fired nondeterminisitically. Suppose that one ddnode has a signal function responsible for

sounding an alarm in the event that the ddnode becomes IN. Another ddnode has a signal

function which checks for equipment malfunctions and corrects the malfunction if possible.

Suppose that during an update both ddnodes come IN but the execution of the second signal

function would serve to detect an equipment malfunction, fix it, and update the network

in such a way that the alarm ddnode would go OUT. If the malfunction checking signal

function is called first, and the alarm signal function checks to see if it is still warranted,
then the alarm will never sound. Assuming that you don't want to be bothered with

alarms caused by faulty (but repairable) equipment, the order in which signal functions are

processed is critical.

One way of getting the timing to work out involves the use of priority queues. Each
priority level is associated with a set of executable objects (e.g., closures) such that when
an object at one level is executed it can assume that all objects with higher priority have al-
ready been executed. The priority levels can be associated with data base properties, called

invariants (see David McAllester's RUP system [Mc~llester 821 for a discussion of the use
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of invariants in reason maintenance). In the example above "all repairable equipment mal-
functions accounted for" might be a useful invariant to maintain. And obviously it should

be of a higher priority than "alarm sounded if malfunction outstanding. In describing the
time map management system, I will introduce a number of invariants. In addition, the

user is also given a range of priorities that are for his sole use. The time map invariants

are of higher priority than any user invariants in order to discourage the user from making

deductions on the basis of a partially updated time map.

Each signal function has associated with it a priority level and a condition which must be

true in order to warrant the execution of the signal function. In the RMS update algorithm,

once the status assignments have been recomputed, all ddnodes that have changed status

have their signal functions checked. Any signal functions whose conditions are satisfied are

placed in the priority queue at the appropriate level. When the update is completed all the

objects in the queue are executed in such a way that an object can assume that all objects

of higher priority have been executed. Just before execution the condition is checked once

more to ensure that execution is still warranted. I'm not going to describe how one sets up

and installs signal functions for invariants. The details are not important to our discussion.
The temporal reason maintenance algorithm is based upon the maintenance of a number

of specific invariants. The necessary signal functions and their corresponding priorities will
be detailed in Chapter 4.

DUCK provides utilities to enable the user to tell the system exactly what to do when

an assertion toggles from IN to OUT or alternatively OUT to IN. The resulting programs

are called change-driven interrupts and are implemented by attaching signal functions to

the ddnodes corresponding to the assertions of interest. The simplest form of change-

driven interrupt can be implemented using what are called if.-erased demons (Sussman 71]
[McDermott 85]. An if-erased demon is just a piece of code that is executed whenever an

assertion becomes OUT. The following illustrates how to set up an if-erased demon designed
to perform the delicate operation of editing a corporation's christmas card mailing list.

(if-erased '(employee-record ?person ?job-description)
(for-first-answer
(fetch '(and (thnot (employee-record ?person ?alternate-job-description))

(christmas-card-recipient ?person)))
(erase '(christmas-card-recipient ?person))))

If any assertion corresponding to an employee's job record ever becomes OUT, then a

signal function attached to the assertion is executed. This function checks to see that the
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employee is currently on the christmas mailing list and doesn't have have another job with

the company, and if so, effectively removes the employee from the list. If-erased demons
will suffice for dealing with any changes we will have to handle in this chapter. You can

assume that the signal functions associated with if-erased demons have lower priority than
any of the temporal reason maintenance invariants (and hence are executed only after all

temporal invariants are satisfied).

3.2.6 Example application

It's probably worth considering a simple example illustrating how one might put to use the
functionality of data dependencies and signal functions. Suppose that we need a program

for detecting and diagnosing problems in a chemical plant. A dependency network could

be designed to model production at each stage in the chemical process. The dependencies
would capture certain expected states and their implications, and the system would rely

upon outside sensors to assist in updating the current state of the process. Signal functions
would be attached to ddnodes representing certain selected states. These states might

signify potentially dangerous situations warranting action of some sort. The signal functions

would enable the system to alert the authorities, or perhaps even to instigate corrective

measures on its own initiative.

To keep the program up to date there would be some number of routines responsible
for sampling production parameters and updating the dependency network to reflect new

values. Quantitative measures could be approximated using qualitative states [Forbus 84]

reflected in the status of dependency nodes. Instead of saying (level contact-reactor4
41), you might have a ddnode corresponding to (,= (level contact-reactor4) saf ety-

threshold). In the event that the level in contact-reactor4 went from 34 cm to 45 cm, the

ddnode (>= (level contact-reactor4) saetty-th eshold) might toggle from OUT to

IN. The dependency network would perform like a simulation of the physical system. Signal

functions would be attached to various nodes with instructions about how to respond in

certain situations.

Suppose that the chemical process involves the generation of synthetic ammonia. Then

the dependency network might encode a rule like: If the pressure in contact-reactor4

is in the normal operating range and the backpressure at circulation-pMn17 is below

2 atm., then suspect inadvertent venting of ammonia gas to the atmosphere. If the node
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corresponding to "inadvertent venting of ammonia gas" ever came IN, then a signal function

could be used to issue a warning, close a valve, or instigate some other response.

3.2.7 Review

We now have a deductive retrieval system capable of keeping track of what is believed and

why. A fact is believed if it is labeled IN and not believed if it is labeled OUT. "Why" is

recorded in terms of justifications. DUCK provides a number of mechanisms for setting up

and installing justifications, and the RMS efficiently recomputes the labels of facts affected

by the new justifications. We also explored techniques for responding to changes in the

status of facts in the data base. The idea of a priority queue mechanism for maintaining

a set of invariants was adopted from McAllester. This idea will figure prominently in

the algorithms for temporal reason maintenance described in Chapter 4. In the following

sections I will show how the functionality described in this section can be extended to reason

about events and their effects changing over time.

3.3 Basic temporal notions

As mentioned in the previous chapter the principal items in our ontology are points, inter-

vals, and time tokens. Of these only the first and the last are data types (respectively POINT

and TOKEN) in the TMM. An object of data type POINT designates an instant in time. That

instant needn't be completely specified in any particular frame of reference. That is to say

the system needn't be able to specify the precise location of a particular point on the time

line laid down by a given clock. Every point is itself a frame of reference. I may know that

exactly five minutes after starting the coffee maker this morning I sat down at the kitchen

table to read the paper. I also know that I started the coffee maker sometime after being

disturbed from a sound sleep by a wrong number. The time between waking and sitting

down at the table to read the paper is only approximately known. This is represented as a

fuzzy number [McDermott 84]: an upper and lower bound on the distance separating two

-*- points in the time map. The time map consists of points linked by constraints which bound

• "the distance (in some units of time) separating pairs of points. The following function is

- used to denote the distance between two points.

(define-function (distance FIXNUX (POINT POINT)))
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We want to be able to add new constraints and determine what is known about the
distance separating two points in the time map. The function distance allows us to refer
to the distance separating two points in the time map. We now need a set of predicates
so that we can retrieve and modify information about such distances. The time map is

designed to efficiently compute the best bounds on the distance separating a pair of points
in the time map (see Chapter 4 for details). I'll refer to those bounds as the GLB (greatest
lower bound) and LUB (least upper bound). For our purposes a constraint between two

points can be viewed as a directed edge labeled with an upper and lower bound on the
distance between the points. A path from ptl to pt2 through the time map consists of a

sequence of points and constraints starting at ptl and ending at pt2. Each path determines
a pair of bounds (lower and upper) on the distance between the two points. The lower
(upper) bound of a path is computed by taking the sum of the lower (upper) bounds of
the individual constraints in the path. The GLB (LUB) on the distance separating two

points is equal to the greatest (least) of the lower (upper) path bounds given all paths
connecting the two points. The predicate strict-elt (for 'strictly an element ort) is used

to determine the best known (strictest) bounds on the value of terms denoting integers
(FI-N, ). In general, (strict-elt trml trm2 trm3) means that trml is bounded from
below by trm2 and from above by trm3, and that there are no better bounds known:. The
predicate declaration is simply:

(define-predicate (strict-lit FIXNUM FIXNUM FIZNUM))

So, for instance, the query (strict-elt (distance ptl pt2) ?low Thigh) will return
with ?ow and ?high bound to the GLB and LUB respectively. As was mentioned in

Section 3.2.1, a FIXUM is either an integer or one of a small set of special symbols. In the
TMM, there are four symbolic FUXNUs. The symbols opos-inf* and *neg-inf* denote

numbers (respectively) larger and smaller than any other number. In addition, *pos-tiny*
(*neg-tiny*) denotes a number greater (less) than 0 but less (greater) than any positive

(negative) number. The only arithmetic operations used by the TMM involving symbolic
FIINUMs are addition and subtraction and these are quite straightforward. If ptl and pt2

are unconstrained and ?low and ?high are unbound, (strict-elt (distance ptl pt2)
?low ?high) will succeed with substitution ((low *neg-inf.) (high *pos-inf)).

Next I'II introduce a similar (though lea restrictive) predicate called simply elt.

(define-predicate (elt FIXiINU FIXNM FIUINM))

b..
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The predication (elt trml trm2 trm3) means that trml is bounded from below by
trm2 and from above by trm3. A query of the form (elt (distance ptl pt2) 6 9) will
succeed just in case there exists a path from ptl to pt2 with lower bound greater than or
equal to 6, and upper bound less than or equal to 9. Elt reports on whether or not a set of

bounds are supported by the current set of constraints in the time map. It turns out that
this is not all that useful. Most of the time what we want to know is whether or not a set

of bounds is consistent with the constraints in the time map. In the next section I'll discuss
this in greater detail.

For the sake of convenience, I'll define a set of predicates, pt-<, pt<, pt>, pt>=, and
ptf, which serve as shorthand for various uses of elt.

(define-predicate (ptt POINT POINT))

(<- (pt< ptl pt2)
(elt (distance ptl pt2) *pos-tiny* *pon-inf*))

(define-predicate (pt=< POINT POINT))

(<- (ptf< ptl pt2)
(elt (distance ptl pt2) 0 *pos-inx*))

The other definitions are quite similar, and I won't bother with them.

So far we only know how to ask questions about the distance separating points in the

time map. We need to be able to add information as well. You can add a new constraint to
the time map by asserting something of the form (elt (distance ptl pt2) low high)
where low and high are FIXUMs. This supplies an upper and lower bound (not necessarily
the least upper or greatest lower) on the distance separating ptl and pt2. It may also
change the strict bounds (G LBs and LUBs) on distances separating other pairs of points in
the time map, since the new constraint can be used to compute new paths between pairs of

points besides those that it directly refers to.

An assertion of the form (elt (distance ptl pt2) low high) does not affect existing
constraints. Indeed, it may add no new information to the time map if there are already
better bounds on the distance between the points. The same constraint can be added several

times, each time with a different justification. Only by undermining all justifications for a
given constraint can its influence be removed from the time map.

Now that we can add constraints between points and determine information about the
distance separating points, it would be nice to be able to create new points. What we're

iiin...............I.- . . . ... ..... ... .
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really interested in is the ability to create entities corresponding to events and facts. These

entities will refer to time points, but it is the entities themselves that are of primary interest.

An interval is just a pair of points. Certain intervals, however, are of more interest

than others, and for these we generally supply some name or description. Quite often such

intervals correspond to the occurrence of events or a span of time separating two events.
An interval might, also be associated with a particular instance of a fact becoming true and

enduring over a period of time. All such "distinguished" intervals share the data types

TOKEN. TIME-TOKEN might be more appropriate but the shorter version is more convenient

and there should be no ambiguity in these pages. There are two obvious functions associated
with TOKENs, namely their beginning and end points.

(define-function (begin POINT (TOKEN)))

(define-function (end POINT (TOKEN)))

In addition, we define a predicate for going from TOKENs to their descriptions (PROPs) and

back.

(define-predicate (time-token PROP TOKEN))

Given a query of the form (time-token (ingest-caffeine self) ?tok), the TMM
would return a list of answers in which ?tok is bound to a TOKEN with a description (ingest-

caffeine self) (also referred to as the token's type). Asserting (time-token (ingest-
caffeine self) tokl) would add to the time map a new object tokl of data type TOKEN

with the given schema. In a conjunctive assertion such as:

(assert (and (time-token (lunch self cafeteria) ?tok)
(elt (distance (begin ?tok) (end ?tok)) 15 20)))

in which the variable ?tok is unbound, the TMM will create a new object corresponding

to a TOKEN with schema (lunch self cafeteria), and bind ?tok to that symbol. When
(Celt (distance (begin ?tok) (end ?tok)) 15 20) is encountered, the constraint will

be added between the beginning and ending of the newly created TOKEN6.

6In this chapter when we speak of types we we referring to data types. This is not to be confused with the

distinction made in logic between types and tokens. An object of data type TOZER is meant to denote a
particular instance of a clan of events or facts described by that object's schema. Said in another way, an
object of data type TOKER denotes a (logical) token which is an instance of the (logical) type characterized

by its schema.

'The correct way to handle the variables in this cae would be to use an existential quantifier (e.g., (sx-
lits (tok) (and (tiae-tokea P tok) (*It (distance (begin tok) (and tok)) 1 20)))) and have

.. . . . . . . . .
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The previous chapter discussed at some length the intuitions surrounding distinctions

between facts and events, and I won't belabor the point here. Suffice it to say that these

distinctions don't carry over into the data types in the implementation. The time map makes

no internal distinction between TOKENs interpreted as events and those interpreted as facts.

A distinction, however, is implied in the tokens and rules that the user adds to the data

base. Certain fact types can be defined to contradict other fact types. Two tokens are said

to be contradictory if their corresponding types are determined to be contradictory. Such

tokens are treated as fact tokens (i.e., persistences) by the TMM. Contradiction criteria are

defined using the contradict predicate.

(define-predicate (contradict PROP PROP))

Example criteria are:

(contradicts (not ?p) ?p)
and
((- (contradicts (color-of ?obj ?colorl) (color-of ?obj ?color2))

(thnot (ff ?colorl ?color2)))

As far as the time map is concerned, any token found to be in contradiction with

another token is treated as a fact. The TMM performs no additional interpretation. It

does, however, perform an important service involving contradictory tokens.

If one token is determined to be in contradiction with a second, and the first is con-

strained to begin before the second begins, then the first is constrained to end before the

second (assuming such a constraint is consistent with the existing constraints). This is

referred to as the rule of persistence, and while the rule is quite simple in form, it figures

prominently in a number of important assumptions that are deeply woven into the fabric

of time maps as used in the TMM.

The rule of persistence is used to modify the duration of fact tokens. If I assert that

the light in the attic is on, then, lacking information to the contrary, I am quite willing

to believe it will stay on indefinitely. This willingness on my part to believe that certain

facts persist indefinitely if unmolested, corresponds to there being no upper bound on the

duration of the associated token (or perhaps an upper bound equal to the estimated life of

the light bulb). I am also open to the possibility that subsequent information will lower

the deductive retrieval machinery Skolemize the formula at the time the asertion is made. I apologize to

any purists offended by the above hack.

• ~~~~~~~~~..'.. .... "...... ....-.... .. ".. ........ ........-....... -......... .....................-........... • ....
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that upper bound (e.g., someone fetches something from the attic and turns the light off).

This readiness to terminate the duration of a fact in the face of evidence of its extinction

corresponds to the lower bound on the token's duration being zero (or at least very small).

The rule of persistence is used to remove apparent but resolvable contradictions.

(C- (apparent-contradiction ?tokl ?tok2)
(and (time-token ?p ?tokl)

(time-token ?q ?tok2)
(contradicts ?p ?q)
(strict-ait (distance (begin ?tokl) (begin ?tok2)) ?blow ?bhigh)
(=< 0 ?blow)
(strict-elt (distance (begin ?tok2) (end ?tokl)) ?elow ?ehigh)
(- 0 ?ehigh)))

Two apparently contradictory tokens can be resolved if it is possible that the one be-

ginning earlier can end before the later.

(c- (resolvable-contradiction ?tokl ?tok2)
(and (ipparent-contradiction ?tokl ?tok2)

(strict-elt (distance (begin ?tok2) (end ?tokl)) ?low ?high)
(( ?low 0)))

Whenever the TMM discovers a resolvable contradiction, it removes it by adding a

constraint to ensure that the earlier token ends before the later (the actual mechanism will

be discussed in Chapter 4). Unfortunately, not all apparent contradictions are resolvable.

There is no way to resolve apparently contradictory tokens with coincident beginning points.
Also, there are situations in which it is reasonable to give a token describing a fact a duration

with an upper bound greater than 0. If I notice the light being on for some time and later

am told that it was not on during the period I observed it, then I should be disturbed. it

would be wrong for the TMM to resolve the inconsistency without notifying someone of

a problem. In such a situation the TMM will describe the problem and then prompt the

calling program to remove one or more constraints in order to resolve the contradiction.

The important decisions are left up to the calling program.

In applications using the TMM, the durations for event tokens are generally tightly

constrained. Fact tokens are typically tied quite closely to the events that they are believed

to be effects of. The end points of fact tokens are generally constrained only by contradictory

tokens via the rule of persistence. There are exceptions of course (such as the example of

having been witness to the light shining over an interval), but in the main it is reasonable

to constrain the lower bound on the distance between the begin and end of a fact token

'i......,.... . .......- , ..' ,......... ......... ;,..,.. ,a... :.... ....... '
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to be 0. In later sections we'll see how this default lower bound asists in reasoning about

change in a temporal database.

Most of the rest of this chapter is dedicated to explaining how the information stored in

time maps is to be interpreted and made use of in a principled manner. This task will be

easier if the text is supplemented with diagrams displaying the information in a given time

map. To this end I will devote the next section to describing some conventions for drawing

and interpreting time-map diagrams.

3.4 Conventions for displaying time maps

There are no privileged frames of reference in a time map. Some, such as the frame of

- - reference associated with local clock time, are more convenient than others for certain types

of communication, but generally the context establishes what a good frame of reference is

for a given reasoning task. While the time-map routines can use any frame of reference

and jump between different frames of reference as easily as you jump between words, it is

necessary for display purposes to settle upon a single frame of reference. If we're talking

about a football game, then the beginning of the game or perhaps halftime is preferable

to noon eastern standard time on the day the game was played. If a chemist is reasoning

about chemical reactions, then the point where a catalytic agent is added to a solution

might provide a good frame of reference. Unfortunately, there are times when a single

frame of reference fails to provide adequate resolution for viewing a large number of events

and effects. In such situations it is often necessary to display different sets of points with

respect to different frames of reference. The various frames of reference often constitute

some sort of a hierarchy, such as the refinement hierarchies discussed in the previous chapter.

To make understanding time-map displays easr for the reader, I have adopted a number

of conventions that are observed by the TMM in generating 'pictures' of the data base.

These conventions are listed below and immediately followed by an example illustrating

their use.

1. Displays will be separated into sections with each section beginning with a frame-of-

reference line.

2. The frame of reference line includes the name of the point being used as a frame of

reference (e.g., ptl or (begin toki)), a scale factor, and an arrow indicating where
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the point is positioned in the display.

3. A point, ptl, is displayed using the frame of reference, pt2, as follows:

(a) If ptl is known with precision relative to pt2 (the lower bound on the distance
separating the two points is equal to the upper bound), then it will be shown
as a vertical bar "i" in the appropriate position7 , unless that position is off the

page, in which case one of "t' or 'V' will be used to indicate where it lies.

(b) If the bounds on the distance separating ptl and pt2 are distinct, then both
the upper and lower bound are displayed separately using the conventions for

precisely determined points. The resulting two markers are then linked using a

squiggly line (i.e., '.. ).

4. A token, tokl, is displayed using the frame of reference, pt2, as follows:

(a) The token symbol is printed (in this case tokl) followed by the token's schema
(e.g., (puton cupl shellf )) on one line.

(b) On a second line, the point (begin tokl) is displayed in the frame of reference

of pt2 as above.

(c) On the same line, the point (end tokl) is displayed using (begin tokl) as a
frame of reference s .

(d) The markers corresponding to the upper bound of (begin tokl) with respect to

pt2 and the lower bound of (end toki) with respect to (begin toki) are linked
using a dashed line (u---U)

(e) If the upper bound on the distance from (begin tokl) to (end tokl) would
extend the print line off the display, then a squiggly line is extended from the

marker for the lower bound to the edge of the display and terminated with a

'. This makes clear in many cases the scope of a persistence.

The display generated by the above algorithm is generally quite simple to interpret. The
more constrained the time map, the less ambiguity present in the display. To demonstrate

?The appropriate position is calculated as an offset from the position of the reference point in the display

equal to the product of the scale factor and the distance separating the two points in the time map.

'The marker for the upper bound of (begin tokl) with respect to pt2 serves as the position of (begin
tokl) in the display. This position is used to calculate the offsets for the marks displaying (sad tokl)

" . -
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we can use the predicates defined in the previous section to construct a time map for a

simple scenario.

Suppose that it's now noon and I'm considering the events which transpired earlier in

the morning. At 8:00, give or take 15 minutes, I entered room 301 of Dunham lab to discuss

our planning project with three others working on the project. The meeting was to last

between 2.5 and 3.5 hours. An hour into the meeting someone called in an order to a local

restaurant for coffee and pastries to be delivered. The order arrived 20 or 30 minutes later.

Five minutes after the coffee arrived someone bumped the table, spilling coffee the length

of the table, and thereby soaking my pants which are still wet even as I sit contemplating

the accident.

In the following, unknowns (uninstantiated parameters) appear as skolem constants

(they should actually be skolem functions but ..), *now* is a POINT referring to the present

moment, 12:00 AM, and minutes are the basic unit of time (zinc is a conversion function

that converts notations of the form hours:minutes into minutes). The steps or assertions

shown for constructing this time map are exactly those used in the actual TMM. I have

included them here (and elsewhere) because they provide a clear account of how one goes

about using the TMM and, precisely what information one has to supply in order to get

particular results.

The following assertions are added to the database:

(time-token (meet I<Xikhail ubert Louis. self) ra3Olduamba) meetingl7)
(time-token (place-order sk42 order3l) orderingl2)
(time-token (deliver sk43 order31 rm30ldunhaa) delivery45)
(time-token (shake sk44 table13) disaster3)
(time-token (spill coffee tablel3) spilI72)
(time-token (wet self coffee) wet33)
(elt (distance (begin meeting17) *now*) (zinc 3:45) (zinc 4:15))
(elt (distance (begin meetingl7) (end aeetingl7)) (zinc 2:30) (ainc 3:30))
(elt (distance (begin meetingl7) (begin orderingl2)) 60 60)
(elt (distance (begin orderingl2) (end orderingl2)) 2 4)
(elt (distance (end orderingl2) (begin dolivery4S)) 20 30)
(elit (distance (begin delivery45) (end delivery45)) 3 5)
(elt (distance (end delivery45) (begin disaster3)) 5 5)
(elt (distance (begin disaster3) (end disaster3)) 1 2)
(elt (distance (end disaster3) (begin spill72)) 0 1)
(elt (distance (begin spill72) (end epil172)) 1 1)
(elt (distance (end spil172) (begin wet33)) 0 0)
(lt (distance (begin wet33) (end wet33)) 0 *pos-inf*)

- .. . * - . . *. . *. . * *.. .
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Frame of reference: *now* Scale: 0.3

meeting17 (soet !<Mikhail Hubert Louis. self), raM30Duaha)
I ------ --------------------------------- ----------------- I

orderiugl2 (place-order sk42 order3l)

d~livery45 (deliver sk43 order3l rm30lDwihast)

disaster3 (shake sk44 tablel3)
-- -- -- -

spill72 (spill coffee tablel3)

wet33 (wet self colffee)
I ----------- --------------------------- >

Frame of reference: (begin delivory45) Scale: 1.6

orderingl2 (place-order sk42 order3l)
< ------------------ I-I II
delivery45 (deliver sk43 order3l ru30lDwahaa)

disaster3 (shake sk44 tablel3)

spill72 (spill coffee tablel3)

wot33 (wet self coffee)

Figure 3.7: Example time-map display
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Figure 3.7 shows two views of the resulting time map. The first displays all the tokens

with respect to the current moment. The second uses the beginning of the delivery event as a

frame of reference and shows just those events and facts concerned with the incident in which

I was splashed with coffee. The difference in resolution is quite apparent in the two views.

Unless the case being made specifically requires it, most of the displays to follow will deal

in more precise point-to-point distances. However, it is important to note that reasoning

about time invariably requires the ability to deal with inexact and ambiguous information.

Interpreting time-map displays is difficult precisely because much of the information is

hidden. While we are seldom aware of all of the ramifications of our temporal knowledge,
we do manage to keep track of many important orderings and approximate durations. If

the order of two events becomes crucial to our plans, we are quite adept at making do with
whatever information we have, or gathering more if need be. The next two sections will

show how the TMM manages similar feats.

3.5 Default reasoning in partially ordered time maps

The information in a time map is generally incomplete. Event tokens are partially ordered,
constraints on their occurrence are specified as funy intervals, and the only information

typically available concerning the duration of persistences is an upper bound. In order

to make use of time maps, it is important to adopt a consistent strategy for interpreting

the information they contain. The interpretation strategy built into the operation of the

TMM is quite simple. Events occur as early as they can (the lower bound on the duration
of an event token is most indicative of its start time), and fact tokens persist as long as

possible (the duration of a persistence is best estimated by the upper bound on the distance

separating its begin and end points). According to this strategy a fact P is true throughout

an interval just in case there exists a fact token of type P that begins before, or is coincident

with, the beginning of the interval, and it's consistent to believe that the token persists

at least as long as the interval. In order to define a predicate that captures this, we first

need to be able to reason about whether it's consistent to believe in certain relationships
involving the distance separating points in the time map.

Earlier we defined a predicate elt and a function distance that were useful in reasoning

about the duration of intervals separating points in the time map. A query of the form (lit

(distance pt, pt 2) low high) allows us to determine whether or not a set of bounds (low

°.- -.
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and high) on the distance separating a pair of points are supported by the current set of

constraints (i.e., the lower bound low is not greater than the GLB and the upper bound

high is not less than the LUB). Now I want to consider an operator N such that a query
of the form (N (elt (distance ptl pt2 ) low high)) will succeed just in case the bounds

on (distance pt, pt2 ) are consistent with the current set of constraints.

Consider the following definition:

( (elt (distance ?ptl Tpt2) ?low Thigh))
(and (strict-elt (distance ?ptl ?pt2) ?glb Tiub)

(< ?low ?high)
(? 'low ?lub)
(=< ?glb 'high)))

Suppose that the GLB and LUB on the distance separating ptl and pt2 are 4 and

8 respectively (i.e., (strict-elt (distance ptl pt2) 4 8) succeeds). In this case the

query (N (elt (distance ptl pt2) 3 5)) should succeed, but (N (eit (distance ptl

pt2) 2 3)) should fail. This is obviously a nonmonotonic inference. The inference (N

(elt (distance ptl pt2) 3 )) is valid as the example was given. However, if I sub

sequently add the contraint (cit (distance ptl pt2) 7 *pos-lnf*), then the inference

is no longer valid. Noticing when the status of such nonmonotonic inferences change (and

what the consequences ae) is an important part of temporal reason maintenance. In what

follows, I'll assume that it is clear how the N operator behaves with regard to shorthand

expressions for uses of elt involving point-to-point disances (e.g., pt=< and pt>).

Now we can proceed to define a predicate tt (for "true throughout' an interval) that

will help us reason about facts that change over time.

(define-predicate (tt POINT POINT PROP))

A query of the form (tt ptl pt2 Q) is taken to mean, 'Is it possible that q is true through-

out the interval from pt1 to pt2?'. The definition is:

i : (<- (tt ?ptl ?pt2 ?q)

(and (time-token ?q ?tok)
(pt=< (begin ?tok) ?ptl)
(N (pt=< ?pt2 (end ?tok)))))

We can also define a predicate t which is intended to stand for 'true at' a point:

(define-predicate (t POINT PROP))

"...
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Its definition is trivial:

(C- (t ?pt ?q) (tt ?pt ?pt ?q))

Describing exactly how the predicate tt works in various situations will occupy most of

this and the next section. In the remainder of this section I want to look at two very basic

aspects of its behavior. First, how are queries involving tt handled by the TMM? The

exposition of temporal query processing should serve to familiarize the reader with some of
the routine operations on the time map. The second issue I'm interested in involves what

happens when default assumptions involving persistences are undermined. How does the

TMM respond to update the data base, and how is the user alerted to the fact that assertions

made on the basis of some earlier state of the time map are no longer warranted? Section

3.5.2 provides the reader with an introduction to the role temporal reason maintenance
plays in the TMM.

3.5.1 Processing temporal queries

Understanding how the TMM handles temporal queries is best done in the context of an

example. The example I'll be using is drawn from the machine shop domain [Firby 851

and deals with scheduling machines to perform various manufacturing tasks. In this simple

example there are four machines lathel4, lathe17, lathe34, and lathe9, each of which
is available for use only over certain intervals (a machine is available for use at a particular

time just in case its production-status is fr). The machines can also have various

attachments installed over certain intervals. There is one event token corresponding to the

task to complete (muacture) a certain order (Iot427). We're interested in determining

which machines are available for assisting in the manufacturing process. First we have to

set up the initial situation in the time map.

In this example, the reference point *ref* corresponds to 12:00 noon, the base temporal

unit is a minute, and the function minc converts hours:minutes to minutes. The manufac-

turing task can't begin until after 10:30 AM (assume that some prerequisite operation won't

be completed until that time) and must be finished by 1.00 PM. The task is estimated to

take between an hour and an hour and fifteen minutes. The assertions below set up the

situation shown in Figure 3.8:

(time-token (production-status lathel4 free) pstatusl)

.oo".. . .
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Frame of reference: *refs Scale: 0.2

patatusi (production-status lathel4 free)
I------------ ------ ------- ------------------------------ )

pstatus2 (production-status lath@l7 free)
1I------ I------------------------->

pstatus3 (production-status lathe34 f ree)
------------------ I

pstatus4 (production-status latheg free)
if -------------- ---------------

installedi (installed milling-attachment lathoW4
--------------------------------------------------------

order721 (manufacture 1ot427)
-------- I----------1

Note: For this example I've provided a rule ()along the top of the time

map marked off in hour increments.

Figure 3.8: Time map for demonstrating temporal query procesing
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(time-token (production-status lathel7 free) pstatus2)
(time-token (production-status lathe34 free) pstatus3)
(time-token (production-status lathe9 free) pstatus4)
(time-token (installed milling-attachment lathel4) installedl)
(time-token (manufacture lot427) order721)
(elt (distance (begin pstatul) *ref*) (minc 4:00) (minc 4:00))
(elt (distance (begin pstatusl) (end pstatul)) 0 *pos-inf*)
(elt (distance (begin pstatus2) *ref*) (minc 1:00) (minc 1:00))
(elt (distance (begin pstatus2) (end pstatus2)) 0 *pos-inf*)
(clt (distance (begin petatus3) *ref*) (minc 3:00) (minc 3:00))
(elt (distance (begin pstatus3) (end pstatus3)) 0 (minc 2:00))
(elt (distance (begin pstatus4) *ref*) (minc 2:30) (minc 2:30))
(elt (distance (begin pstatus4) (end pstatus4)) 0 (mine 3:00))
(elt (distance (begin installedl) *ref*) (minc 3:30) (zinc 3:30))
(elt (distance (begin installedl) (end installedl)) 0 *pos-inf*)
(elt (distance (begin order721) *refs) (minc 1:30) *pos-mi*)
(elt (distance (begin order721) (end order721)) (mine 1:00) (minc 1:15))
(elt (distance *ref* (end order721)) *neg-Is (minc 1:00))

Now, consider the following query:

(and (time-token (manufacture lot427) ?tok)
(tt (begin ?tok) (end ?tok) (production-status ?machine free))
(instance-of ?machine lathe))

If we assume that each of lathel4, lathelT, lathe34, and lathe9 are provably in-

stances of lathes, then this query should return with exactly two answers, one with substi-

tution ((machine lathe14) (tok order721)), and a second with substitution ((machine

lathe9) (tok order721)). The query will fail for { (machine lathel7) (tok order721))
(the corresponding token pstatus2 doesn't begin earlier enough) and ( (machine lathe34) (tok

order72 1)) (pstatus3 doesn't persist long enough).

For the slightly more complicated query:

(and (time-token (manufacture Iot427) ?tok)
(tt (begin ?tok) (end ?tok) (production-status ?machine free))
(instance-of ?machine lathe)
(tt (begin ?tok) (end ?tok) (installed milling-attachment ?machine)))

there is only one answer (with substitution ((machine lathel4) (tok order721))), since

there is only one lathe that is both free and has the necessary attachment throughout the

required interval.

You might have noticed that the first query would have succeeded with lathel7 if we

bad made the additional assertion:

"- _ .+, .... . .. . . / , ' . -, ,. . . .. - - _' ., , ~ ~. .,:. -.-...- . .. . .- .. - .- .... .
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(elt (distance (begin pstatus2) (begin order72)) 0 *pos-in[*)

In Section 3.6 we will consider how to go about noticing that certain additional constraints

(referred to as abductive premises) will allow a deduction to succeed where otherwise it

would not. This sort of inference is critical in reasoning with incomplete information.

The above examples only begin to show off the system's capabilities. The TMM can
handle a wide range of temporal queries. For an example illustrating a bit more versatility,

let's suppose that there is a conveyor system conveyor2 located in the area designated

as working-bay3l that has been threatening to break down for some time. Cognizant of

this fact, the planner tries to inspect the conveyor following periods of heavy use. The
manufacturing task (manufacture lot721) will make frequent use of conveyor2. In order

-to handle the inspection of conveyor2 efficiently, the planner might look for a time following
the production of lot427 when someone is servicing a machine located in working-bay3l

such that the conveyor is idle (and hence accessible for inspection) for at least fifteen minutes

following the service task (the amount of time required for a detailed inspection).

Consider the following query:

(and (time-token (routine-service ?machine) ?tokl)
(location ?machine working-bay3l)
(time-token (manufacture 1ot427) ?tok2)
(M (pt< (end ?tok2) (begin ?tokl)))
(N (elt (distance (end ?tokl) ?some-later-point) 15 *pos-inf*))
(tt (end ?tokl) ?some-later-point (production-status conveyor2 idle)))

This will require a little explanation. It is assumed that predications involving the
locations of massive objects like machine tools are timelessly true. If the TMM encounters

a conjunct involving (elt (distance ?ptl ?pt2) ?low ?high) or (tt ?ptl ?pt2 P) in
which either one or both of ?ptl and ?pt2 are unbound, the system creates new points,

binds the variables appropriately, and then continues as though the points were bound all

along.

The above query can be interpreted as saying, find a token corresponding to a task

to perform routine service on some machine located in working-bay3l, such that it is
possible that the task occurs after the manufacturing task involving lot427, and it is true

immediately following and for at least 18 minutes after the service task that conveyor2 is

not being used. In later sections, we'll see other examples demonstrating more complicated

query processing capabilities.

. . . . . .. . . . . . . .
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So far I haven't mentioned anything about the ddnode/support-type pairs returned in
an answer involving a temporal query. I'll get to this in the next subsection.

3.5.2 Noticing and responding to assumption failures

The answers to the queries in the examples of the previous section are based on default

assumptions concerning the persistence of fact tokens in the time map. It is often the
case that steps in deductions involving the predicate tt are invalidated by subsequent

additions and erasures from the time map. There are three ways in which this can happen
corresponding to the three conjuncts in the definition of tt (page 82):

1. (time-token ?q ?tok)

2. (ptz< (begin ?tok) ?ptl)

3. (H (pt-< ?pt2 (end ?tok)))

With regard to the first conjunct, the ddnode associated with the time token (bound to

?tok) used in making the deduction can become OUT. Relative to the second conjunct

it is possible that certain constraints will become OUT so that it is no longer possible

to conclude (pt-< (begin ?tok) ?pt1). The third conjunct involves a nonmonotonic

inference. By adding constraints it may become possible to conclude that (pt> ?pt2 (end
?tok)), thereby invalidating the conjunct (M (pt-( ?pt2 (end ?tok))). Generally the

only time you are interested in the continued validity of conclusions extracted from the time

map is when you have used those conclusions as a basis for deriving further consequences.
Whenever the TMM successfully processes a query involving tt, it augments the current
answer (in particular the ddnode/support-type pairs) in such a way that assertions occurring
in the context of that answer will be believed, just in case the above three conditions
continue to hold. The details of how this is accomplished will be presented in Chapter 4;

in this chapter we're only concerned with how we can put this to use.

The addition of new fact tokens and constraints on their occurrence can result in changes

in the duration of existing time tokens. This change may serve to violate default assumptions

concerning the persistence of fact tokens. I'll refer to such violations as interactions. An
interaction occurs when a belief that was previously warranted is suddenly threatened by
the addition of new information.

...
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Suppose that I had planned on the use of the faculty conference room for a colloquium

1 am responsible for organizing. At some point in the morning I am told that a minor

funding potentate will be visiting in the afternoon and the conference room will be used for

an impromptu reception during just those hours I had scheduled the colloquium. I should

realize that my colloquium is threatened and arrange for an alternative meeting place.

Not all interactions are unpleasant or a cause for alarm. As another example, say that

I've noticed the kitchen sink is draining slowly, and I resolve to call the landlord. Before I

get around to making the call, I notice that the sink is now draining with no problem. The

task to call the landlord should now evaporate without much fuss.

The consequences of making certain assumptions can be arbitrarily complex. Suppose

that instead of bothering the landlord (who wouldn't have done anything anyway), I consider

0 doing the job myself and begin to formulate an elaborate plan that involves buying tools

from the local hardware and rearranging all my appointments for the day. If I then notice

that the problem has disappeared, the partially expanded plan should evaporate as well,

but in this case dealing with the consequences may require considerable replanning.

Now let's be a bit more specific about what we mean by an interaction. In the TMM an

assertion is said to be contingently believed if that assertion is believed just in case some

other fact is believed to be true at an instant or throughout some interval. The stipulation

that a fact is believed to be true at an instant or throughout some interval is said to be

a (temporally dependent) condition for belief. An interaction occurs when something is

determined to happen that undermines the conditions for belief in some assertion. For

example. suppose that I was counting on the department office being open late enough for

me to use the copier after completing the most recent draft of my thesis. An interaction

could arise in a number of alternative ways:

1. 1 am told that the secretary will be locking up early today.

2. the draft takes longer than I anticipated and I'm still working when 5:00 rolls around

* 3. 1 discover that the office was never opened in the first place; it's Grover Cleveland's

birthday.

4. 1 bear from an office mate that the copier broke a belt and there is no replacement

part
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Figure 3.9 shows a time map describing the situation. The reference point, *rot*, is

12:00 noon, the base temporal unit is a minute, minc converts hours:minutes to minutes,

the CS office opens at 8:00 AM and usually stays open until 5:00 PM, and the copier has

been up (functional) for at least the last 3 hours. The requisite assertions are:

(time-token (operational-status CScopier in-service) in-service3i)
(time-tOken (open CSoffice) open32)
(time-token (finish draft49) finish42)
(time-token (copy draft49 3) copy-taskl2)
(elt (distance (begin open32) (end open32)) 0 (minc 9:00))
(elt (distance (begin in-service3l) (end in-service3l)) 0 *ps-inf*)
(elt (distance (begin open32) *ref*) (minc 4:00) (minc 4:00))
(elt (distance (begin in-service3l) *ref*) (minc 3:00) (minc 3:00))
(elt (distance *ref* (begin finish42)) (minc 1:00) *pos-inf*)
(elt (distance (begin finish42) (end finish42)) 0 0)
(elt (distance (end finish42) (begin copy-taskl2)) 0 *pos-int*)
(elt (distance (begin copy-taskl2) (end copy-taskl2)) 20 30)

What I want to demonstrate with this example is how the rule of persistence (Section

3.3) and the query mechanism work in concert to detect and annotate interactions. I'll have

to be more precise about how the "true throughout" predicate tt works, but before I get

to that it will be instructive to see what functionality is lacking.

The rule of persistence has already been briefly described in this chapter (page 75). Its

mandate is carried out automatically by the time-map machinery. To reiterate: the rule of

persistence detects when two tokens, TI and T2, asserting contradictory propositions, are

ordered such that (begin Ti) precedes (begin T2) and it's not the case that (eand Ti)
precedes (begin T2). Whenever the TMM finds a pair of tokens satisfying this criteria it

determines if it is possible that (end ti) precedes (begin T2) (i.e., the least upper bound

on the distance separating the two points is greater than 0). If this last condition cannot

be met then the data base is said to be inconsistent and some action must be taken to

remove the inconsistency. If the condition is met, then the TMM adds the constraint (elt

(distance (end Ti) (begin T2)) *pos-tiny* *po-if*)'. The operation of adding

constraints via the rule of persistence is referred to as persistence clipping.

-Recall that *pos-tinys denotes a number greater than sero but les than any positive number (except
itself). This constraint in conjunction with the way we handle tt implies that persistences are closed on
the left and open on the right. That is to say the fact associated with a persistence is believed at the
beginnning of the persistence interval and up to but not including the end of that interval.

o°' . . . ... . . . . . . . . .... . .. .... . . .. •. ..-. .
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Frame of reference: *ref* Scale: 0.2

open32 (open CSoffice)
----------------- I---------------------------------------------)

in-service3l (operational-status CScopier in-service)
II ---------------------------------------------- >

finish42 (finish draft49)

copy-taskl2 (copy draft49 3)
-> ----.I

Figure 3.9: Initial time map for the copier example

To illustrate, suppose we added the following to the time map in Figure 3.9 (this is case
4 of the interactions listed on page 88):

(time-token (broke belt34 CScopier) malfunction34)
(time-token (operational-status CScopier down) dovn128)
(elt (distance (begin malfunction34) (end malfunctiou34)) 0 1)
(elt (distance *ref* (begin malfunction34)) (zinc 0:30) (zinc 1:00))
(elt (distance (begin down128) (end dowl128)) 0 *pos-inf*)
(elt (distance (end mallunction34) (begin dovn128)) 0 0)

That is to say a belt breaks in the department copier sometime between 12:30 and 1.0 PM
resulting in the copier being down for some indeterminate period of time. In order for the

TMM to understand that being "down" contradicts being "in-service', the data base must
contain a rule such as the following:

(C- (contradicts (operational-status ?machine ?statusl)
(operational-status ?machine ?status2))

(thnot (:= ?statusl ?status2)))

Figure 3.10 shows the result of having made the above assertions. Notice that the only
thing that has changed, other than the addition of don128 and malfunction34, is the

upper bound on in-service31; the persistence in-service3] has been clipped by the
persistence doval28 by the TMM in resolving the apparent contradiction between the two

tokens.

Now for a moment let's return to my initial problem and the time map of Figure 3.9.
I'm counting on using the department copier for making three copies of my thesis draft.
If the machine is operational and the office is open, then I'm willing to believe that I can

. . .... . . .
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Frame of reference: *ref* Scale: 0.2

open32 (open CSoffice)
II -----...........-----------------------------------------------------
in-service3l (operational-status CScopier in-service)

I I--------I----------------------------------I
maltunction34 (broke belt34 CScopier)

" ~I-..II
down128 (operational-status CScopier down)

I.II----------
finish42 (finish dralt49)

1>1
copy-taskl2 (copy draft49 3)

I> .----- -

Figure 3.10: Demonstration of persistence clipping

execute a simple set of steps, the result of which is that I'll be in possession of three copies
of my thesis draft. In the TMM one way of setting this up would be to execute the following

LISP fragment with the time map of Figure 3.9:
' ] (for-first-answer

(fetch '(and (time-token (copy draft49 3) ?tok)
(tt (begin ?tok) (end ?tok)

(operational-status CScopier in-service))
(tt (begin ?tok) (end ?tok) (open CSoffice))))

(add *(and (time-token (possess copiesl4) possess3l)
(elt (distance (end ?tok) (begin possess3l)) 0 0))))

You can think of the query as establishing conditions warranting the plan of using the

department copier for making my three copies. The assertion is a prediction of what will

happen if those conditions are maintained and I actually execute a plan to make three copies

on the department copier. The time map in Figure 3.11 shows the result of this operation.

Note that apart from the addition of the new token possess31 nothing has changed from
the time map in Figure 3.9.

Notice that the query establishing the conditions for the plan to use the office copier
would not have succeeded in the time map of Figure 3.10, since in this time map the

department copier broke down between 12:30 and 1:00. However, if, having already executed
the above code fragment, we add the assertions involving the malfunction of the department

copier, then we won't notice that the conditions for our plan are no longer met. So far I

** **°o-*.*.* ** ***
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Frame of reference: *ref* Scale: 0.2

open32 (open CSoffice)
II ------------------------------------------------------------------
in-service3i (operational-status CScopier in-service)

- ----------------------------------------------
finish42 (finish dralt49)

I'I
copy-tauki2 (copy draft49 3)

I>---- 1-I
possess3l (possess copies14)

Figure 3.11: Result of the hypothesis generation and projection steps

have said very little about what is done after a query succeeds with respect to the end points

of persistences involved in satisfying a "true throughout" query. If an application program

makes assertions on the basis of a answer returned by the TMM, then those assertions are
dependent upon the state of the time map reflected in the query answer. We would like

to ensure that the consequent assertions are believed just in case the antecedent conditions
in the time map continue to hold. There ae two ways that this might be accomplished.

* * First, we could just add constraints that ensure the antecedent conditions. Second, we

could keep track of the validity of the antecedent conditions and update the status of the

consequent assertions accordingly. In the following pages I want to explore the advantages

and disadvantages of both methods.

We would like to be able to keep track of the continued validity of conditional assertions.

If believing in I relies on believing in P being true throughout an interval, then we want to

be able to either guarantee the condition or be able to detect when it is no longer met. P is

said to be protected throughout an interval pti to pt2 just in case there exists a persistence

Ti with fact type P such that TI begins before ptl and Ti cannot be shown to end before

pt2. A protection is violated if its corresponding fact is ever false during the interval.

One way we might guarantee a protection is by adding the constraint (ptm< ?pt2 (end
?tok)) to ensure the continued validity of the nonmonotonic assumption (M (pt-< ?pt2

(end ?tok))) in the definition of tt. Suppose that we get the TMM to do this for us
whenever we make an assertion in the context of an answer containing a nonmonotonic

temporal assumption. Now if we execute the code fragment for establishing the conditions

;-,.
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Frame of reference: *ref* Scale: 0.2

open32 (open CSoffice)
I ---------------------------------------------- ----------
in-service3l (operational-status CScopier in-service)

I ------------------------------------- ----------
finish42 (finish draf t49)
. I>,
copy-taskl2 (copy draft49 3)

i1> ---- i'1
possess3l (possess copies14)

I . . .

Figure 3.12: Result of the hypothesis generation and projection steps

for the plan to use the office copier, we get the time map in Figure 3.12.

The important thing to notice here is the change in the lower bound of the in-service3l
and open32 persistences. The conditions for the plan to use the office copier are now
guaranteed. In fact the TMM would not allow you to add the assertions concerning the

malfunction of the department copier. These assertions are inconsistent with the time map

of Figure 3.12.

This technique of "stretching' persistence is one method of implementing protections.
The only way that a protection violation can occur is by relaxing the constraints (i e.,
removing one or more constraints). This means that the system is monotonic: adding new
facts can never cause a protection violation. A protection in this scheme is equivalent to a
pair of constraints: that a token with the required fact type begins before and ends after

the interval over which the fact is being protected.

This persistence-stretching method has certain advantages. It is employed in the TMM
as the method of choice for handling certain types of resource management [Miller 85a). It

can also be used to implement a variant of Vere's DEVISER planner [Vere 831 that uses the
point-and-token-based representation of time presented in this dissertation. One of its main

advantages is that the constraints added in constructing protections act to enforce deadlines
in a neat parsimonious way. For instance, the plan to use the department copier in Figure
3.12 after the hypothesize/projection step is constrained to begin at least 20 minutes before

5:00 PM.

..

.. - .-
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The disadvantages, however, make it worth our while to consider alternatives. One

disadvantage is flexibility. It is often convenient in debugging plans to determine what the

repercussions are of modifying certain constraints in the time map. For instance, in building

a house one might ask what problems would be encountered if the concrete basement floor
was poured (installed) in the early stages of construction. Using the persistence-stretching

method you would simply be informed (assuming that there are potential problems in

pouring the concrete early) that such a modification cannot be made (i.e., it is inconsistent
with the current data base). What you want, however, is a blow-by-blow account of what

things might go wrong, so you can assess what might be done to make an early pouring

feasible.

Another disadvantage concerns the need to accurately annotate assumption failures (of
which protection violations are an example) in time maps. As an example, suppose that I am

delayed in finishing the draft of my dissertation and I won't get a chance to make copies until

after 5:00 PM. I represent this by adding the constraint (elt (distance *ref* (begin

copy-taskl)) (minc 5:00) *pa-iz*) to the time map of Figure 3.12. This constraint

is inconsistent with the time map as it is now, and the reason is due to the constraint added

by the protection. Now the reason for the delay might be a squash game, or it might be

something slightly more critical like a forgotten appointment with one's advisor. In any

case you'd like to be aware of what is involved so you can react appropriately. Determining

the consequences of adding or removing a constraint using the protection scheme outlined

above is nontrivial.

Ideally what we would like is a data base that, given some additional information, would

do its best to accommodate the new data, reorganize itself to suit, and then spit out a list
of beliefs that had to be modified in the revised data base in order to include the new

information. Unfortunately this sort of magic data base in not likely to materialize. It is

possible, however, to use data-dependency methods in a highly controlled manner to get

surprising flexibility out of a temporal data base.

By highly controlled manner' I mean that we stipulate in advance what sort of behavior
we expect of the system. The N operator serves as annotation to tell the deductive retrieval

machinery what sort of default assumptions to incorporate into the current answer. The

predication (H P) is said to indicate a default in that it effectively says believe P if you can,

but be prepared to give it up (and anything that depends upon it as well) if you ever have

reason to believe (not P). By using defaults what we am really doing is stating a priority

..................
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on beliefs. Rules containing the K operator specify the conditions under which they can be

overridden. Such rules are said to be nonmonotonic because the addition of new information

can result in the falsification of old. In general the behavior of nonmonotonic systems is

difficult to predict or analyze [McDermott 80], but in cases where the defaults are few and

of a simple form the behavior can be quite straightforward. In the TMM defaults are used

to give precedence to the rule of persistence.

The dependencies set up in processing queries involving tt don't really serve to 'protect"

anything. They establish what might be more appropriately called "persistence assump-

tions". Nevertheless, because of the way in which these assumptions are used in planning

systems (e.g., [Miller 85a]), I continue to refer to them as protections. As we'll see they are

used to accomplish very much the same effect.

Suppose that I am told that the secretary leaves at noon and locks the department office

for the day. This would be added to the time map of Figure 3.11 as:

(time-token (lockup sk34 CSoffice) lockupl7)
(time-token (closed CSoffice) closed33)
(elt (distance (begin lockup17) (end lockupl7)) 1 2)
(elt (distance *ref* (begin lockupl7)) 0 0)
(elt (distance (end lockupl7) (begin closed33)) 0 0)
(elt (distance (begin closed33) (end closed33)) 0 *pos-inf*)

In response to these assertions, the system reconfigures the data base and notes that

something that was formerly believed is no longer so; the time token with fact type (possess

copiesl4) is now OUT. The result is shown in Figure 3.13. The token possess31 is

labeled as OUT and is shown as unconstrained relative to the other tokens in the time

map. Something similar would have happened if we had added the assertions about the

department copier malfunctioning.

Simply labeling tokens as OUT won't be sufficient for handling complex hypothetical

reasoning of the sort envisioned in Chapter 1. Some interactions are inconsequential; others

are of minor interest, requiring at most a bit of bookkeeping; and still others are critical,

demanding our immediate attention and, potentially, the expenditure of significant com-

putational resources for their resolution. The TMM provides utilities to enable the user

to tell the system exactly what to do when an assertion fails or, for that matter, becomes

true. These are called change-driven interrupts, and they ae implemented using data de-

pendencies (see Section 3.2 for details). Such interrupts can also be prioritized so the more
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Frame of reference: *ref* Scale: 0.2

pOss@Is3 l (posss copiesl4) OUT
('>I ------------------------------------------------------------ >
open32 (open CSoff ice)
I I ------------------------- --------- I-------I
in-service3l (operational-status CScopier in-service)

---------------------------------------------------- >
lockupl7 (lockup sk34 CSoff ice)

closed33 (closed CSoff ice)
-------------------- >

finish42 (finish dralt49)

copy-taskl2 (copy draft49 3)

Figure 3.13: Result of the hypothesis generation and projection steps

critical changes are handled first. The use of change-driven interrupts helps to pinpoint

what problems in the data base require attention. It also helps in debugging by allowing

the user to make tentative changes to the data base and then consider their repercussions:

OWhat if I put off that game of squash until the afternoon - could I get the draft done

in time to make the copies by noon?' Interrupts can range from simple annotations to

complex programs which add all sorts of information to the time map.

The following illustrates how to set up an if-erased demon (Section 3.2) designed to alert

the calling program to tasks that appear to fail.

(if-erased * (time-token ?schema ?tok)
(for-first-answer (fetch '(and (inst ?achema, task-schema)

(ptac *now* (begin ?tok))))
code-go-debug-failing-task))

What this says is, if an assertion denoting a time token ever becomes OUT, then check

to see if the token corresponds to a task that has yet to be achieved, and if no, execute some

code to try to see what went wrong.
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3.5.3 Alternative methods for reasoning about protections

Two approaches to handling protections have been presented in this section. One involves

the use of defaults to keep track of whether or not a fact continues to be protected through-

out an interval, and the other requires imposing constraints to ensure the protection. In

the first, we stipulate what conditions must hold for a proposition to be believed, and when

those conditions are no longer met we retract our belief in that proposition. The extent of

our belief is built into the dependencies constructed by the TMM at the time the belief is

asserted. In the time map, persistence clipping is given a high priority. Conflicts involving

a protection and a pair of overlapping contradictory tokens are always resolved in favor of

eliminating the apparent contradiction. If this results in a protection violation, then the

TMM notes which additional beliefs are affected. These beliefs are marked as OUT in the

data base. The TMM provides a form of temporal reason maintenance via its treatment of

protections and persistences. The second approach, which I'll refer to as the relazation ap-

proach, handles protections by adding constraints to extend persistences. This means that

when two contradictory tokens are constrained to overlap, the rule of persistence might not

be able to carry out its mandate. To do so would make the set of constraints inconsistent.

It is also possible that the rule of persistence has already ordered two tokens and some sub-

sequent constraint is determined to be inconsistent with existing constraints. The system

is then forced to find those constraints implicated in the inconsistency and then trace them

to determine which ones can be relaxed in order to proceed. If the constraints chosen for

relaxation are always those added in the course of setting up protections, then a system

based on the relaxation method will behave similar to one based on the default approach.

Given any functionality supported by one, I have little doubt that a suitably augmented

version of the other could not support the same functionality. I will focus upon the default

approach because I think that it is the cleaner of the two and more directly supports the

sort of computation required of temporal reasoning.

Temporal databases of the sort being considered in this thesis are unavoidably non-

monotonic. It is inevitable that if we predict anything we will occasionally be wrong and

be forced to revise our beliefs. The question is how and in what manner should the revision

occur.

David McAllester [McAllester 80] has claimed that nonmonotonic logics and the data

dependency systems that most closely characterize them introduce nonmonotonicity too

early, and at the cost of much confusion. He espouses instead the idea of monitoring a

".'..

- *o* . .



CHAPTER 3. TEMPORAL DATA BASE MANAGEMENT 98

monotonic deductive system and handling the potential inconsistencies that arise using

external rules for establishing the precedence of beliefs. The system's behavior as a whole is

nonmonotonic, but the core deductive component is not. The relaxation method of handling

protections and persistences can be seen as such an approach. In McAllester's system,

dependencies between propositions are recorded to assist in resolving contradictions. I

believe that it would be fairly straightforward to implement a system such as the TMM

using the relaxation approach described above and McAllester's reason maintenance system.

However, I claim that in the case or the TMM the defaults are well enough understood that

some of the deductive machinery can be effectively short circuited to expedite the reasoning

process.

In the end, it is the functionality of the TMM that I am most interested in communi-

cating. What sort of computation is required in order to support reasoning about time?

Issues involving computational complexity are critical in separating out a set of functions

that are both useful and feasible. However, the decision to use the default approach over

the relaxation approach will not result in any significant reduction in complexity. What

we want is a computational framework that is pared down to the essentials required for

supporting temporal reasoning.

3.6 Hypothesis generation and abductive Inference

Section 1.3 discussed an approach to reasoning about time referred to as shallow temporal
re.onig. The basic idea is that, beginning from an initial data base of facts and rules, one

attempts to extend that data base by a cycle of shallow inferences (i.e., inferences involving

few steps). The extensions generally correspond to explanations in the case of diagnosis or

more detailed descriptions of plans for achieving tasks in the case of planning. In Chapter
5, 1 will demonstrate how shallow temporal reasoning plays a role in planning. This section

describes how the TMM assists in one aspect of shallow temporal reasoning. the generation

of competing hypotheses. In the following, I will use the general term 'planner' to refer to

an application program using the TMM.

The first step in any reasoning process involves choosing something to work on (i.e.,

reason about). This choice is obviously crucial, but I will have very little to say about it

here. In the TMM, this something to work on is generally an event token corresponding to

a task or interesting phenomenon.



CHAPTER 3. TEMPORAL DATA BASE MANAGEMENT 99

Once a planner has decided what to work on, it tries to generate a set of competing

hypotheses that in some way place the event in a temporal and causal context. In planning

* the objective is to reduce a complex task to a series of simpler subtasks. So the planner

would be trying to find a set of plans (or task reductions) whose applicability criteria

are met. For example, in the machine-shop domain, you might have a rule stating that,

whenever the big engine lathe is tied up and you get a rush job, the best thing to do is

to find a production turret lathe and interrupt whatever job is being performed on that

lathe so you can get the rush job out in time. In diagnosis one might want to account for

some unexplained fact (a symptom or malfunctioning part).- As an example of a diagnostic

task, the planner might be trying to explain why assembly-unit34 has broken down. The

planner might have a rule that states, if an assembly unit breaks down, and it is found

to be low on hydraulic fluid, and it is not overdue for routine service, then suspect 0-ring

deterioration and schedule an overhaul of the hydraulic system. It's quite likely that there

will be more than one hypothesis for a given event. The planner might also have a rule that

states, if an assembly unit breaks down, and it's found to be low on hydraulic fluid, and

it's using a new brand of hydraulic fluid, then suspect that the new fluid is more volatile

and has to replaced more frequently or cooled more thoroughly. Each hypothesis from the

TMM's point of view consists of a set of facts that must be true over certain intervals and

a set of additional constraints to be added to the time map (a restriction on the current

partial order). In the case of the hypothesis concerning the new brand of hydraulic fluid,

one additional constraint might be that the planner believes that assembly-vnit34 had its

most recent routine service after the last of the Garbosol Lo-V hydraulic fluid ran out. The

TMM can keep track of several of these hypotheses (and their corresponding restrictions)

at once in order to separate generating hypotheses and choosing between them.

For hypothesis generation we need a method of extracting possibilities from the time

map in such a way that assumptions made in the course of the extraction do not perma-

nently change its content. In other words, we want to construct a hypothetical situation

that satisfies some criteria (e.g., of a good explanation or a suitable plan) and then set

the description of that situation aside for later comparison with other situations meeting

the same criteria. This could be accomplished by using some sort of context mechanism

[McDermott 831 to split the database, but given that the deductions involved are assumed

to be shallow and only one hypothesis will surface as a winner, this is hardly necessary.

In addition to the need for keeping competing hypotheses separate, it is also often
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convenient to allow the system to jump to certain conclusions in the course of generating

hypotheses. The advantage of this is that exploration can proceed despite certain gaps in

our knowledge of the situation. The TMM employs a general operator A (for abductive) that
licences the deductive retrieval system to jump to a conclusion given that it is consistent

to believe that conclusion. This license is granted despite the fact that there is (currently)

no deductive warrant for believing that the conclusion is valid. Note thet the A operator is

distinctly different from the nonmonotonic operator H. In a query of the form (A P), P will
actually be added to the data base given that (K P) succeeds. In such a situation P is said

to be an abductive premise.

Abductive premises generated during backward chaining have restricted scope. An
abductive premise can participate in a deduction only within the scope of the answer (i.e.,

object of data type ANiS) in which it was generated. As long as ans* is bound to an ANlS
containing an abductive premise, it is (effectively) an assertion in the data base. If for

any reason the current answer is reset, either by LISP code or by backtracking through (A
P), the premise is (effectively) removed from the data base (but not from the answer; so,

if one retains a pointer to the answer, its associated abductive premises can be restored

by binding it to anz*). An ANS containing one or more abductive premises is called an

abductive answer.

The TMM can generate any number of abductive answers. Taken together, the abduc-

tive premises contained in these answers may be inconsistent, but each answer in isolation

is assumed to correspond to a consistent data base. Given a set of abductive answers cor-

responding to alternative hypotheses, the user can jump back and forth between answers

in an effort to choose the best such hypothesis. Examination of the underlying abductive

premises will likely play a significant role in this selection process. You can extract the

abductive premises from an ANS using the function extract-nabductive-premises. It is

also possible to have the TMM consult the application program at the point in a deduction
that an expression involving A is encountered. The TMM then asks for permission to incor-

porate an abductive premise into the current answer. This has the advantage of enabling

the application program to cut off obviously fruitless searches and thereby direct searches

with some degree of precision. These techniques aren't really of central importance here;

they ultimately depend primarily on domain specific issues that are inappropriate to pursue

in this dissertation.

Once the application program has selected a given hypothesis, it is necessary to make

................................................-..--.- "..--...." ...-1.-...,. ...-.-.-..- ..".i' ."i.. -... ..-...- .
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the underlying abductive premises a permanent part of the data base. This raises the issue

of providing some sort of justification for abductive premises that are permanently asserted.

Consider a simple scenario involving the following rule:

(<- (engine-status ?vehicle flooded)
(and (engine-compression ?vehicle adequate)

(A (status (carburetor-float-valve ?vehicle) stuck-open))
(iuel-available-at-intake-manifold ?vehicle excessive)))

The above rule states that, you can determine that a vehicle is flooded, if you can prove

that the engine compression is adequate (something you should probably already know),

and, by consistently assuming that the carburetor float valve is stuck, you can prove that

too much fuel is being delivered to the intake manifold. If the above rule succeeds in the

query (engine-status pontiac379 flooded) and the corresponding answer is selected

as the best explanation for how the engine became flooded, then the abductive premise
(status (carburetor-float-valve pontiac379) stuck-open) should be added to the

data base on a permanent basis. What should its justification be? It shouldn't come from

anm*, since it doesn't really depend upon the immediately prior deductions. I may be

willing to jump to the conclusion that the float valve is stuck, simply because I've been

told that this is a common ailment of older pontiacs. In general, characterizing abductive

support is quite difficult. Abductive premises often correspond to good hunches about

. how to proceed in lacking more detailed information. The TMM relies on the application

program to supply suitable support for an abductive premise. If an assertion (other than

one made by the abductive machinery) occurs in the scope of an answer containing an

abductive premise, then that premise is asserted to the data base. The justification for an
abductive premise is extracted from a set of ddnode/support-type pairs specified using the

LISP macro abductive-support. Abductive-support works just like the answer-support

macro described in Section 3.2.4. If selected-hypothesis is bound to an ANS containing

the abductive premise (pt-< (end routine-service-on-lathe41) (begin order437))

and the warrant for jumping to this conclusion is (on-schedule maintenance-crew), then

this dependency would be installed as a result of:

(abductive-support (* '(on-schedule maintenance-crew))
(bind (ANS (ans* selected-hypothesis))

(add consequenee.of.believing.elected.hjypothesie)))

The default abductive support corresponds to the ddnode/support.type pair (abductive-
premise *) where abductive-premise corresponds to a ddnode that is always IN. This

support just serves as annotation to distinguish assertions generated by A from 'real"

. . . . . . . . . . . . .
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premises. There are other mechanisms for setting up justifications for abductive premises,

but abductive-support will serve all of our needs in this dissertation.

Steps one through three of our temporal reasoning paradigm can be restated as: ex-

tract a number of answers (hypothetical situations consistent with the current state of the

database), choose one of those answers and make it current, and then assert whatever new

predictions you can justify using that answer. Translated into pseudo-code this might look

like:

(let ((best-answer-so-far 0))
(for-each-anser (fetch criteria-for-ezplanation.of-event)

(if (ne-answer-is-better-than-best-answer-so-far
ans* best-answer-so-far)

(:: best-answer-so-far as*)))
(abductive-support (* reasons.-for-believing-abductive-premuiea)

(bind ((ans* best-answer-so-far))
(add consequences-of-he.bes-ezplanaoon))))

In the TMM, the only conclusions we are interested in jumping to involve the order in

which events occur. All of the abductive premises I will be discussing involve predications

of the form (elt (distance ptl ptz) low high) (or shorthand versions (e.g., (pt< pt,
pt 2))). An abductive premise in this case constitutes a constraint or restriction on the

partially ordered time map. The question we have to ask ourselves is, "When is it reasonable

to add a constraint to the time map?" A time map is a partial order on points and hence

on tokens representing the occurrence of events and persistence of their effects. If it were
totally ordered, there would never be any need to jump to conclusions. That is to say,

if we had perfect knowledge of the past, present, and future, we wouldn't need to assume

anything. But then there would be little incentive for doing much of anything, and certainly

no point in planning, except as idle speculation about how things might possibly be, were
there a chance they could be otherwise. Fortunately, we can influence the future. There

ae events that we have control over. We can decide when, and in what order to perform

a set of actions. By our actions, we can both cause and prevent other events. This means

that we can decide to order certain events, in the sense that we can choose to believe that

they will occur in a given order. But indecision about the order in which to execute actions

is not the only source of uncertainty. Some orderings are not consistent with the rest of

my beliefs. There are events I have no power to influence. And there are events about

whose precise occurrence or, for that matter, possibility of occurrence I am ignorant. If I

commit to the wrong ordering, my predictions about the future will be suspect, and I will

have to resolve the contradictions that arise when my observations conflict with my beliefs.

..- .- " : ,.. -.......m'd""-- 
"

'" '.............."-"" m"'""""" '... .



CHAPTER 3. TEMPORAL DATA BASE MANAGEMENT 103

Frame of reference: *ref* = 12:00 AM Scale: 5.2

proxlocation45 (proximity John Cambridge)
<< ----------------------------------------------
bectonhours3 (open Becton)

I ---------------------------------------------- I
sterlinghours7 (open Sterling)
I--------------------------------------------------I

beineckehoursl4 (open Beinecke)
I ------------------- I ------------------------------

scholarlypursuit46 (access-scholarly-reference John MedievalArt421)
I> --------------- I

arrival14 (arrive John NewHaven)

proxlocation3l (proximity John NewHaven)

Figure 3.14: Time map for the Yale libraries example

If on the other hand I fail to commit to an ordering, then my predictions are likely to be

inadequate. This tradeoff between commitment and procrastination is a recurring theme in

temporal reasoning. Often the only justification for certain abductive premises is, "wishful

thinking sometimes works. I have very little to say about justifying abductive premises.

The main issue addressed here concerns how one goes about extracting possibilities from a

partially ordered time map.

One of the primary methods for reasoning about possibilities involving restrictions on the

time map involves the use of an alternative, abductive definition of the 'true throughout'

predicate (see page 82 for the previous definition).

A query of the form (tt ptl pt2 Q) is now taken to mean, "Is there a restriction on the

current time map such that it is possible that Q is true throughout the interval from ptl to

pt2?'. The new definition is:

" - (tt ?ptl ?pt2 ?q)
(and (time-token ?q ?tok)

(A (pts< (begin ?tok) ?ptl))
(N (pt=< ?pt2 (end ?tok)))))

To see how this works in processing temporal queries, consider the following example.

-- V

.o3

p33,. ,.e *. *.*-*



. . V '-r n rp r - r r - , , , - ,,

CHAPTER 3. TEMPORAL DATA BASE MANAGEMENT 104

John, a graduate student attending Harvard, is interested in making some notes from a

rather obscure treatise on medieval art. Having made inquiries, he knows that there are

only three libraries in the world that have copies of this work, and all three are located

at Yale University in New Haven, Connecticut. The three libraries are called Beinecke,

Sterling, and Becton (Beinecke houses the original work). John has arranged to take the

train from Cambridge to New Haven in order to get the information that he needs for

his research. It is currently 1:00 PM, and John won't be arriving in town until sometime

between 4:00 and 5:00. He has estimated that his work will take three to four hours, and

he's worried that the libraries won't be open long enough for him to finish the job and get

back to Cambridge for classes tomorrow. Becton closes at 6:00 PM, and Sterling at 9:00.

Beinecke is open eight hours a day, but John is not sure what those hours are. He does

know, however, that they begin after 9:00 AM and end before 10-00 PM. The situation is

shown in the time map display in Figure 3.14.

Consider the following query:

(and (time-token (access-scholarly-reference John KedievalArt421) ?tok)
(tt (begin ?tok) (end ?tok) (proximity John NewHaven))
(tt (begin ?tok) (end ?tok) (open ?lib)))

The TMM will return with two answers for this query. The first answer has substitution

((lib Sterling) (tok scholarlyparsuit46)) and abductive premises ((pt=< (begin
proxlocation3l) (begin acholarlypursuit46))). The second answer has substitution

{ (lib Beinecke) (tok scholarlyporsuit46)) and abductive premises ((pts< (begin
proxlocation3l) (begin scholarlypursuit46)) (pt=< (begin beineckehoural4) (be-

gin scholarlyparsuit46))).

Notice that there is no answer returned such that ?lib gets bound to hcton. This is
because the conjunct (tt (begin ?tok) (end ?tok) (proximity John NewRaven)) sue-

ceeds only if the beginning of scholarlypursuits46 is constrained to follow the beginning

of proxlocation3l, and given this constraint bectonhours3 doesn't persist long enough.

I'd like to embellish this example somewhat in order to provide the reader with some

more exposure to code employing TMM routines. At the same time, Ill introduce some
notation and techniques for reasoning about plans. The basic ideas presented here might

be used for text comprehension or robot problem solving. In Chapter 5, l1l extend the

methods shown here to assist in robot problem solving tasks. The first thing we need is a

predicate to-do:
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(let ((st ANS) (possible-plans 0))
(for-each-answer

(fetch '(to-do ?tsk ?type ?plan-description))
(: possible-plans (cons ans* possible-plans)))

(bind (ANS (ans* (choose-best-plan-answer possible-plans)))
(add '(plan-chosen-for ?tsk ?plan-description))
code-to-perform-plan-ecpansion))

Figure 3.15: Code fragment for reasoning about plans

(define-predicate (to-do TOKEN PROP PROP))

In a predication of the form (to-do ?tok ?type ?plan-description), ?tok is a token

corresponding to a task of type ?type such that ?plan-description provides a detailed

account of how to achieve such a task given the temporal constraints on ?tok. Notation

for plan descriptions will have to wait until Chapter 5, but the following backward chaining

rule still serves to illustrate how the to-do predicate might be used in deriving plans for

specific situations.

(<- (to-do ?tsk (access-scholarly-reference ?tgent ?ref)
schemo-describing.detailed-plan)

(tt (begin ?tsk) (end ?tsk) (and (has-copy ?ref ?lib)
(instance-of ?lib library)
(location ?lib ?loc)
(proxiaity ?agent ?loc)
(open ?lib))))

The above rule states that aehemo-deseribing-detiled-plan describes a plan that ?agent

might use to gain access to ?ref just in case it is true throughout the time allocated for ?tsk

that some open library ?lib in the proximity of ?agent possesses a copy of ?ref °0 . Well
assume that facts like (has-copy edievalArt421 Belnecke), (instance-of Sterling

library), and (location Becton NewHaven) are timelessly true.

Now consider the code fragment shown in Figure 3.15. The for-each-answer code

collects a list of answers corresponding to possible ways of achieving a task of type ?type

given the temporal constraints on the token ?tsk. I am assuming that there is a set of rules

involving the to-do predicate that serve as an index into a library of plans for achieving

various tasks (see Section 5.2). The function choose-best-plan-answer takes a list of

"Note that (tt ?b ?e (and P, ... P.)) is equivalent to (and (tt ?b ?s P) ... (tt ?b T P.)).
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Frame of reference: *ref* = 12:00 AN Scale: 5.2

proxlocation45 (proximity John Cambridge)
<<--- - - - -------------------------
bectonhours3 (open Becton)
I ----------------------------------------------

sterlinghours7 (open Sterling)
I -----------------------------------------------------------

beineckehoursl4 (open Beinecke)
I --------- I ------------------------------------ I

arrivall4 (arrive John NewHaven)

proxlocation3l (proximity John NewHaven)

scholarlypursuit46 (access-scholarly-reference John NedievalArt421)
> .---------------- ---- I

scholarlysubtaskl (locate John MedievalJrt421 (stacks Sterling))
I> .----- -I

scholarlysubtask2 (extract-information John Kedieva]lrt421)
i -- "I --- I"I

Figure 3.16: John chooses to do his research in Sterling

answers (objects of data type ANS) describing plans and selects the best such answer on

the basis of some criteria. In the last part of the code fragment in Figure 3.15 the current
answer ans* is bound to the best answer as specified by choose-best-plan-awer, and

some number of assertions are made in the context of that answer in the course of expanding

the chosen plan according to the value for the variable ?plan-description in the selected

answer. The assertions in the context of an answer containing abductive premises result

in these premises being added to the data ban. Since no abductive support was supplied,

these abductive premises are given the above mentioned default abductive support.

If the code in Figure 3.15 is executed in the context of answer containing the follow-
ing bindings ((tak scholarlypursuit46) (type (access-scholarly-reference John

NedievalArt421))), then the variable possible-plans will be bound to a list of two
answers differentiable from one another only in that one commits John to using Sterling

and the other to his using Bienecke. Also, the one involving Bienecke requires two abductive
premises. If we assume that the function choose-best-plan-answer uses the criteria of

fewest abductive premises (obviously a poor choice in general), then the remainder of the
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code in Figure 3.15 will result in the time map of Figure 3.14 Note that the only interesting

difference between this time map and that of Figure 3.16 is that the task corresponding

to scholarlypursuit46 is now constrained to follow John's arrival in New Haven. In this
case, the abductive premise is a plausible one since John presumably has control over the

start time of a task he is responsible for executing. At other times the decision can be more

complex.

Suppose that John also wanted to make sure that his visit to Sterling coincided with a

time during which his Yale girl friend was working in the library. Now, even assuming that

she is willing to cooperate, it will still require that he get in touch with her, inform her of

his plans, and come to some accord over a convenient time. In such cases, making decisions

about event orderings may require arbitrarilly complex deductions. The TMM tries to assist

in such decision making, but the ultimate responsibility lies with the application program.

In this section we've explored how the TMM can be used to extract information about

what is possible, given what is already known. In many situations the possibilities are

abundant. A program will need to be able to look at a number of possibilities, choose

between them, and then use the chosen one as a basis for making further choices and
predictions. The rather complicated bookeeping procedures needed to assist in this process

are facilitated by the TMM using abductive answers and the program-mediated deduction

techniques described in Section 3.2.

The next section describes some special techniques akin to forward chaining in static

data bases developed for reasoning about processes. These techniques will help a great deal

in reasoning about the effects of actions in pling

3.7 Facilities for automatic projection and refinement

It is often convenient to be able to specify routine inferences that are to be performed

whenever certain new facts are added to or removed from the data base. Standard forward

chaining rules are an example of a technique for performing such inferences. As I men-

tioned in Section 3.2.4, controlled forward inference of the sort characterized by the pattern

(for-each-answer (fetch antecedent-conditions) (add cotasequent-predictions)) are un-

suitable for certain applications due to timing problems. One application in which such
timing problems prove particularly irksome concerns reasoning about the effects of actions

in planning.
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A planner has to take into account the effects of actions proposed as steps in a plan for

achieving a given task. However, the specification of a plan should not have to mention

those effects of actions (performed as steps in the plan) that have Do bearing on the plan

achieving its stated objective. It's true that such side effects should be readily available

as they are likely to figure prominently in integrating a set of steps into a larger plan.

It's unreasonable to expect, however, that the plan specification for achieving an isolated

task attempt to anticipate all possible interactions by providing a detailed account of the

physics involved in carrying out the plan. The underlying physics should be represented

elsewhere. A planner should expect that the deductive system responsible for managing

its representation of actions, processes, and their effects occurring over time maintain the

following invariant: the representation should reflect exactly those effects that are licensed

by) the rules describing the physics of the world. Relying on the deductive system to maintain

a physically consistent view of the world frees the planner to concentrate on figuring out
what to do when its actions fail to achieve their Intended effects.

This section describes utilities for performing temporal forward chaining. I will begin

with a temporal analog of (-.I P Q) and then describe methods for reasoning about change,

the effects of actions, and causal relationships.

3.7.1 Implications involving the intersection of overlapping time tokens

A temporalized version of (-), P Q) might be accomplished by something of the form:

()(time-token P ?tokl)
(assert (and (time-token Q ?tok2)

(coincident (begin ?tokl) (begin ?tok2))
(coincident (end ?tokl) (end ?tok2)))))

But this will do what is expected only if P denotes a literal. What if we want a rule of

the form (-> (and Pi ... P.) 0)? First of all, what do we mean by this? A reasonable

interpretation might be, whenever P1 through P. are simultaneously true, you can infer Q.
That is, given any set of ni tokens such that the first has type P1, the second P2 and so
on up to P., then if the intersection of their corresponding intervals is nonempty, we can

construct a new time token of type Q whose endpoints are coincident with the interval of

intersection. The resultant time token with schema Q is said to be a generated token and is

given special treatment by the TMM.
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To distinguish temporal forward-chaining rules from simple forward-chaining rules, the
TMM requires the following form:

(->t PROP PROP)

where conjunctions in the first argument place are handled correctly by the system. In

the TMM a rule of the form (->t (and P1 ... Pu) Q) sets up a series of pattern-invoked
procedures which ensure that for every set of tokens satisfying the above interpretation, a
new token is constructed with the appropriate schema and restrictions on its duration and

start time. These procedures are invoked only in situations where a nonempty intersection
is possible, and thus potentially avoid a lot of unnecessary work. The actual mechanics of
temporal forward chaining are rather complicated. Apart from avoiding work on sets of
tokens that have an empty intersection, there are issues of how the duration of a generated
token is to be restricted, how generated tokens should be handled by the persistence clipping
machinery, and what happens when the conditions that allowed us to generate a particular
token change and no longer warrant the token (for instance when some token is retracted
or clipped, resulting in an empty intersection). These issues will be dealt with in detail in

Chapter 4.

Temporal forward chaining-rules can also be temporally "gated". That is to say you
can temporally restrict the interval of time over which a rule is to apply. An assertion of
the form (->t (and P1 ... P.) Q) is timeless; it applies to any conjunction of appropriate
tokens. An assertion of the form (tine-token (->t (and P ... P.) Q) tokenname)

applies only within the interval (begin tokenname) to (end tokenname). As an example

consider the following assertion: 11

(time-token (->t (and (flashing ?warning-i-.dicator)
(instance-of ?warning-indicator radiation-monitor)
(color ?arning-indicator red))

(radiation-level high))
power-plant-vinit35)

This assertion says that throughout the interval associated with token power-plant-
visit35, one can conclude that the level of radiation is high during any interval in which
a radiation monitor is both flashing and red. (Assume that it could be flashing and yellow

"The property ittmasce-o is normally considered to be timeless. Stipulating it as such in the TMM (i..,
setting the *tpred property of instace-of to be 'timeless) can ave a considerable amount of storage

in the time map.
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to make it interesting.) In most cases this sort of temporally gated rule can be replaced
with a similar rule with another conjunct (e.g., (location sell Throeilelsland)). But
there are situations where the number of additional conjunets required to limit the scope

of a rule is sufficiently large, and their simultaneous occurrence sufficiently rare, that it is

more efficient to use a gated rule.

3.7.2 Representing and reasoning about the physics of a domain

in addition to ->t, which supports a limited form of logical implication, there is also a
method for setting up rules that can be used to model the physics of a domain or project
the consequences of holding certain beliefs. Suppose you believe that every time you're

irritable and hungry and get in a checkout line at the supermarket, the cash register in that
line will surely go on the fritz. You could represent this inevitable fact as:

(peause (and (irritable ?who)
(hungry ?who))

(queue-up ?who ?checkout-aisle)
(operational-status (register ?checkout-aisle) down))

This rule is interpreted as saying that queueing up at a checkout line when you're
irritable and hungry causes the register to be in a nonfunctioning state. Obviously, the

connection between my physical and mental state and the operation of a cash register is not
likely to be causal, except in my warped perception of how the world works. Predications
involving pcause are not restricted to any particular notion of causality. The predicate name
pcause is used primarily for historical reasons [McDermott 82] [Allen 83]; Pcause refers to

* persistence causation. The semantics are quite clear. The first argument is a temporal
precondition, generally a conjunction of fact types. The second argment is generally taken

to be an event type, the so called triggering event. The last argument is a fact type, the
resulting persistence. A pcause rule states that if there exists a token of the given event

type such that the temporal precondition is true throughout the event interval, then one

can infer a new token of the stated fact type whose beginning is coincident with end of the

event interval. Temporal reason maintenance sees to it that exactly those tokens are IN as
are licensed by the rules describing the physics of the domain and the conditions (premised
tokens and constraints on their occurence) specified by the user.

Pcause rules are a special case of a more general class of rules called 'auto-projectione

rules. Auto-projection rules perform a fairly large subset of those inferences that can be

-- n .i ---....-'--,ri llndi ---, i...%d,*.**ro. I ii i - |. l .'|...- n
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performed using controlled forward inference, but without abductive inference and without

the usual timing problems associated with controlled forward inference. To begin the dis-

cussion of the general form, I'd like to point out some of the more obvious limitations of

pcause rules.

The following rule (which you'll see again shortly in Section 3.7.3) might be used as a

means of capturing the physics of completed parts leaving a production unit in the factory

domain:

(pcause (and (production-status (sorter ?proc) running)
(production-status (conveyor ?proc) running))

(batch-process ?proc ?lot)
(location ?lot (staging-area ?proc)))

This rule says that, if the sorter and the conveyor are running throughout the period

of a batch production process, then following the process the production lot will be located
in the production unit's staging area. If we turn off the query mechanism's ability to add

abductive constraints, then the following LISP fragment would perform a service similar to
the above pcause rule disregarding timing considerations:

(for-each-answer
(fetch '(and (tie-token (batch-process ?proc ?lot) ?trigger)

(tt (begin ?trigger) (end ?trigger)
(production-status (sorter ?proc) running))

(tt (begin ?trigger) (end ?trigger)
(production-status (conveyor ?proc) running))))

(add '(and (time-token (location ?lot (staging-area ?proc)) ?result)
(elt (distance (end ?trigger) (end ?result) 0 0)))))

But what if it was only necessary that the conveyor be running when the production

process finished? The only thing that would have to be changed in the controlled for-

ward inference version is to replace the second 'true throughout' conjunct with a 'true

at an instant" conjunct: (t (end ?trigger) (production-status (conveyor ?proc)

running)). What if there was a delay of between 5 and 10 minutes from the time when

the production process finished to the time when the production lot arrived in the staging
area? Again this would be trivial to change in the controlled forward inference version by

simply modifying the constraint assertion. The TMM has a routine for setting up this sort

of rule. The format is similar to that for controlled forward chaining, but it is in the form
of a rule that is asserted to the data base:

(auto-project time.token-trigger-echemo antecedent consequent)

,.................... .
. . . . .
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The time-token-trigger-schema describes the triggering event type and provides a vari-
able to refer to the corresponding token. The antecedent conditions consist solely of tt
and t predications and the consequent prediction is any assertable schema including calling
LISP functions using the call pseudo-predicate. The modified pcause rule with the 5 to

10 minute delay and the modified prerequisite would be:

(auto-proj ect
(time-token (batch-process ?proc ?lot) ?trigger)
(and (tt (begin ?trigger) (end ?trigger)

(production-status (sorter .proc) running))
(t (end ?trigger) (production-status (conveyor ?proc) running)))

(and (time-token (location ?lot (staging-area ?proc)) ?result)
(elt (distance (end ?trigger) (end ?result) 5 10))))

This is still quite restricted. For instance, you're not allowed to have constraints of
the form (elt (distance ptl pt2) low high) in the antecedent conditions of an auto-

projection rule. This would preclude saying, for example, that the conveyor need only be

running during the last five minutes of the production process. This sort of rule can be
constructed, but there is as yet no (released) general format for doing so in the TMM.

Auto-projection rules do allow for a surprising range of uses, however. As an example,
consider the following scenario.

Suppose that you have a rule that says, whenever you have a shipment going out on a

day that the government safety inspectors are visiting, then you should notify the customer
in advance that there may be some delays, and if at all possible have the client make a
specific appointment for pickup. The notification should precede the day of pickup by some
factor dependent upon the customer's distance from the factory. This could be made more

complex by attempting to merge this task with that of informing the customer when to pick
up his order, but I'll ignore that complication. This rule is different from others discussed in
that it projects backward in time. Such rules are said to set up anaechronistic data temporal

dependencies 2 since the consequent token depends upon tokens which follow it in time.

The corresponding auto-projection rule would look like:

(auto-project
(time-token (pick-up ?order ?client) ?trigger)

* (tt (begin ?trigger) (end ?trigger) (inspection-tour ?agency ?purpose)))
(and (time-token (notify ?client (delay (loading-step ?trigger))>) ?result)

(active-task ?result)
(travel-time-estimate ?client factory ?low ?high)
(oit (distance (end ?result) (begin ?trigger)) 'neg-inie ?low)))

"IThe term is due to Stan Letovsky.
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The conjunct (active-task ?result) is used to inform the planner that it must plan
out the details of this task. Rules of this sort could be used to notice the need for all sorts

of tasks, including tasks whose purpose it is to prevent the occurrence of the very events

that prompted them into being in the first place (see [Dean 851).

I'll conclude this section with a demonstration of temporal forward chaining. The ex-
ample will be a bit more complex than the previous examples in an effort to impress the

reader with the capabilities of the machinery developed thus far.

3.7.3 A demonstration of temporal forward chainin~g

Consider the following scenario involving reasoning about production units in a semi-
automated factory. In this factory there are two separate production lines. Batches of
parts manufactured on one line can be transfered to another via transfer units. Different
processes on each production line try to appropriate resources wherever they can find them.

Conflicts naturally arise and have to be resolved. Figure 3.17 depicts the general layout of

the factory.

The example considered in this subsection concerns the problem of taking into account
the simple physics of the factory domain. In the course of routine manufacturing chores,
objects get shuttled around from one location to another according to the physics of robot

manipulators and automated transfer units. Much of this shuttling about occurs as side
effects of the planner's actions to achieve specific tasks. Only occasionally do these side
effects explicitly enter into the plans of the robot controlling production in the factory.
Traditionally, modeling the physics of a domain had to be handled by special plans that
took into account the prerequisites and consequences of the actions of other agents and
processes. These actions had to planned for, just like any other action being contemplated by
the planner itself, with all the attendant problems involving plan failure, backtracking, and

debugging. In the example that follows we'll see that a certain amount of this drudgework
can be eliminated (i.e., carried out by the TMM without the supervision of the planner).

The underlying physics of robot arms and automated material handlers is modeled by
asserting a set of forward chaining rules.

The following rule says that if both the sorter and the conveyor for a given batch
processor are in operation during a manufacturing run of the batch processor then the
finished batch, called a lot", will be located in the batch processor's staging area when the
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production line 0i production line #2

(staging-area screw-machine4) (assembly-area assembler3l)
(feed-hopper I
assembly-machine7)I

screw-machine4 abler3 i
assembly machine7

Figure 3.17: General layout of the factory domain

run is complete (if one of the preconditions is not met, then the finished batch will likely
be scattered on the floor at the base of the batch processor).

(pcause (and (production-status (sorter ?processor) running)
(production-status (conveyor ?processor) running))

(batch-process ?processor ?lot)
(location ?lot (staging-area ?processor))) rule #i

In order to make use of a given object, one prerequisite is that it be accessible from

the location where it is to be used. An object is accessible from a location, loci, if the

desired object is either at loci or there is a running transfer unit connected1' from loci
to a second location, loc2, and the object is at loc2.

(->t (and (location ?obJ ?locl)
(production-status ?transfer-unit running)
(connects ?transfer-unit ?locl ?loc2))

(accessible-from ?obj ?loc2)) rule #2

If an event of the form (mass-transfer ?transfer-unit ?locl ?loc2) occurs, then

all the objects which prior to the transfer were at ?locl are moved to ?loc2. In a mass-

transfer the transfer unit just sweeps everything at the initial location into a bag and then

deposits them all at the new location.

"The predicate connects is declared timeless for this exercise.
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(pcause (and (production-status ?transfer-unit running)
(connects ?transfer-unit ?ocl ?loc2)
(location ?obj ?loci))

(mass-transfer ?transfer-unit ?iocl ?loc2)
(location ?obj ?loc2)) rule #3

There is also a rule that captures the effect of a robot manipulator moving a single object

from one location to another.

(pcause (location ?obj ?locl)
(item-transfer ?manipulator ?obj ?locl ?loc2)
(location ?obj ?loc2)) rule #4

The following rule states that an object cannot be in two places at once.

('- (contradicts (location ?obj ?locl)
(location ?obj ?loc2))

(thnot (:= ?locl ?1oc2))) rule #5

All the machines have been running for the last 24 hours and no down time is expected

in the immediate future. The initial conditions are:

(time-token (production-status transfer-unitl running) runningi)
(time-token (production-status (sorter scre.-machine4) runnling) running2)
(time-token (production-status (conveyor screw-machine4) running) running3)
(elt (distance (begin runningl) *refs) (minc 24:00) (minc 24:00))
(elt (distance (begin running2) *rte*) (minc 24:00) (minc 24:00))
(elt (distance (begin running3) *refs) (minc 24:00) (minc 24:00))

Approximately two hours before the current reference point the stock room ordered a

batch of set screws made. The set screws are manufactured on the first of the two production

lines. We assert:

(time-token (batch-process screw-machine4 set-screw-lot47) batch69)
(inst set-screw-lot47 (lot set-screw))
(elt (distance (begin batch69) (end batch69)) 15 20)
(elit (distance (begin batch69) *ref*) (minc 2:00) (minc 2:00))

* Additionally, there are two outstanding tasks to be completed. The first task taskI

requires that the staging area for the screw machine (an area shared by several machines) be

cleared in preparation for an assembly task. The second task task2 involves appropriating

an additional supply of set screws for a job already in progress.
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I

Frame of reference: *ref* Scale: 0.5

runningi (production-status transfer-unitl running)
I ------------------------------------------------------------

running2 (production-status (sorter screw-machine4) running)
CI . ---------------------------------------------------------------------- >
running3 (production-status (conveyor screw-machine4) running)
<1-------------------------------------------------------------->
batch69 (batch-process screw-machine4 set-screw-lot47)

TOKEN1 (location set-screw-lot47 (staging-area screw-machine4))
I-11 --------------------------------------------------------- >

TOKEN2 (accessible-from set-screw-lot47 (assembly-area assembler3l))
I-11 ------------------------------------------------------

task2 (appropriate (lot set-screw) job45)I--I"1I
taski (clear-working-surface (staging-area screw-machine4))

Figure 3.18: Initial time map for the wandering-set-screws example

(time-token (clear-working-surface (staging-area screw-machine4)) taskl)
(time-token (appropriate (lot set-screw) job45) task2)
(elt (distance (begin taskl) (end taskl)) 15 20)
(elt (distance (begin task2) (end task2)) 5 10)
(elt (distance (begin taskl) *ref*) (ainc 0:30) (zinc 0:30))
(elt (distance (begin task2) *refs) (minc 1:00) (zinc 1:00))

The resulting time map is shown in Figure 3.18. Notice that two new tokens, TO1NI

and TOKEN2, have been generated by the TMM in addition to the ones we have asserted.

These tokens correspond to the results of our first two rules firing (rule #1 determines where

the result of a batch process ends up, and rule #2 determines if an object is accessible from

a location neighboring the location where it is currently situated).

Now we expand taskl: the task to clear everything from (staging-area screw-

machine4) in preparation for an assembly task. To use the mas-transfer primitive all

that is required is that there be a working transfer unit connected from the staging area of

the screw machine to some other location. The expansion is carried out by the following

code:

I-- -" "- -. -.?Z........................................................................................ 5 .
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(for-first-answer
(fetch
(and (time-token (clear-working-surface (staging-area screw-machine4)) ?tok)

(connects ?transfer-unit (staging-area screw-machine4) ?soe-other-loc)
(thnot (:= (staging-area screw-machine4) ?some-other-loc))
(tt (begin ?tok) (end ?tok)

(production-status ?transfer-unit running))))
(add *(and (time-token (mass-transfer transfer-unitl

(staging-area screw-machine4)
?soe-other-loc)

transfer54)
(elt (distance (begin transfer54) (end transfer54)) 5 5)
(elt (distance (end transfer54) (end ?tok) 0 0)))))

Figure 3.19 shows the time map after the expansion. Notice that rule #3 has done

its job, and set-screw-lot47 which was in (staging-area screw-machine4) previous

to the mass-transfer action is now in (assembly-area aseabler3l). The system has

generated a new token TOKEN3 denoting the fact of the set screws being at the new location,

and clipped the persistence of TOKENi (and indirectly TOKEN2 as well) which indicated the

fact of their being at the old location.

Next, the appropriation task (task2) is expanded. The preconditions for the plan of

using a fixed manipulator to simply reach out and grasp a bunch of set screws requires that

there be a suitable bunch of set screws in the nearby staging area of screw-nachine34. If
these conditions are met, executing the item-transfer primitive will effect the required

appropriation. The following code sees to this:

(for-first-answer
(fetch
(and (time-token (appropriate (lot set-screw) job45) ?tok)

(inst ?lot (lot set-screw))
(tt (begin ?tok) (end ?tok)

(location ?lot (staging-area screw-machine4)))))
(add '(and (time-token (item-transfer arm34 ?lot

(staging-area screw-machine4)
(feed-hopper assembly-machine7))

transfer32)
(elt (distance (begin transfer32) (end transfer32)) 2 2)
(elt (distance (end transfer54) (end ?tok) 0 0)))))

The results of expanding task2 are shown in the time map of Figure 3.20. The system-

generated token, TOKEN, is now labeled as OUT. This token was generated by the rule for

projecting the effects of a mass-transfer action, but the conditions under which that rule

was originally fired have changed. Before we expanded task2, set-screw-lot47 could be

.......
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Frame of reference: *ref* Scale: 0.5

runningi (production-status transfer-uniti running)
< I------------------------------------------------------------->
ruzaning2 (production-status (sorter screw-machine4) running)
-------------------------------------------------- ------)

runnming3 (production-status (conveyor screw-machine4) runnig
-------------------------------------------------------------- >

batch69 (batch-process screw-machine4 sot-screw-1ot,47)

TOKENI (location sot-screw-1ot47 (staging-area scrow-machine4)
1-1-------------- I-----------------------------1

TOKEN2 (accessible-from set-screw-lot47 (assembly-area assembler3l))
----------------------------------- --------

task2 (appropriate (lot set-screw) job45)

taski (c lear-working-surface (staging-area scrow-machineO)

transfer54 (mass-transfer transfer-uniti (staging-area screw-machine4)
(assembly-area assemblor3 1))

TOKEN3 (location set-scrow-1ot47 (assembly-area assembler3l))
--------- >

Figure 3.19: The set-screws example after the clear-working-surf ace task is expanded
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predicted to be in the staging area of screw-ahie rigtuunithma-rase

action was executed. Hence, the mass transfer was predicted to result in the set screws

being tranported to the assembly are& of assembler31. After the expansion of task2, set-

screw- 1ot47 is no longer predicted to be in the staging area of screv-machine4l at the

time the mass-transfer action is executed; the set screws were moved to the feed hopper

of assembly-machine7 by the item-transfeOr primitive. If we had expanded task2 before

expanding taski, then TOKEN3 would never have been generated.

It would now appear that the mass transfer action was executed to no purpose. It would

seem that one prerequisite warranting the use of a mass transfer action be the fact that

there is something at the location from which the transfer originates (i.e., this location is

not clear). If the working surface to be cleared is already cleared, then there is nothing to

do. In a situation in which a location can have any number of objects sitting on it, the task

of determining that an area is clear throughout an interval is more difficult than one might

imagine. Conceptually it is quite easy; computationally it is rather messy. In Chapter 4

(Section 4.7.1) we'll see how the time map manages it.

Now in the example above, no one really cared whether set-screw-1ot47 was shuttled

around from the staging area of screw-machine4 to the assembly area of assembler3l.

The shuttling was just a side effect of the mass-transf er action. One can easily imagine,
however, a situation in which it would make a difference. Suppose that another machine

located on the second production line also needed some set screws. Suppose further that

the corresponding task for appropriating them, call it task3, is expanded after taski and

before task2. Now task3 wall surely take advantage of the fact (predicted when task3

is expanded) that set-screv-1ot47 is located in (assembly-area assembler3l) at the

time" the set screws are needed. Task3 is said to depend upon this fact, and a protection is

set up during plan expansion to monitor whether or not it continues to hold. Unfortunately,

after task2 is expanded this fact will no longer be true. When task2 is finally expanded

it will cause a protection violation. This in turn should alert the program to resolve the

dispute over what production process has the most legitimate claim to set-sre-O 4T.

Most of the machinery is now in place for understanding the role of temporal imagery

in planning. Let's consider the overall strategy suggested by the techniques presented thus

far.

When you make a change to the data base (either the addition of new information or

"4This refer. to plani execution time.

............................................

..............................-

. . . . . . . . . . . . . . . . .
. . . . . . . . . -. . . .
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Frame of reference: *ref* Scale: 0.5

TOKEN3 (location set-screw-lot47 (assembly-area assembler3l)) OUT
<>I ---------------------------------------------------------------- I
runningi (production-status transfer-uniti running)

running2 (production-status (sorter screw-machine4) running)
< I--------------------------------------------------------
ru""ing3 (production-status (conveyor screw-machine4) running)
<'I------------------------------ w--------------------------------)
batch69 (batch-process screw-machin94 set-screw-lotM7

I -------- I
TOKENI (location set-screw-1ot47 (staging-area screw-machineW)

1--- ----------------------- I
TOJCEN2 (accessible-from set-screv-1ot47 (assembly-area assembler3l))

-------------------------- I
task2 (appropriate (lot set-screw) job45)

transfer32 (item-transfer arm34 set-scrow-1ot47 (staging-area screw-machine4)
(feed-hopper assembly-machine?)

I--I-I
TOKEN4 (location set-screw-1ot47 (feed-hopper assembly-machine?)

I~I----------------------- >
taski (c lear-working-surface (staging-area screw-machine4))

trazisf cr54 (mass-transfer transfer-unit 1 (staging-area screw-machin*4)
(assembly-area assembler3l))

Figure 3.20: The set-screws example after the appropriation task has been expanded
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the removal of old), the TMM attempts to reorganize things to accommodate the change.

Temporal forward-chaining rules (e.g., pcause auto-projection rules) assist in this reorga-

nization by modeling some of the underlying physics of the domain (e.g., how objects move

around under the influence of various processes). When this reorganization is complete,

the repercussions that matter (those that the user has indicated using the change-driven

interrupts) are available for use as a summary of, or response to, the important develop-

ments in the data base (change-driven interrupts can be used in either capacity). It is the

user's responsibility to decide what to do about these new developments. The system is

only required to provide an accurate picture (time map) of the implications of what the user

believes. A planner proceeds by providing more and more detail concerning how it intends

to accomplish its current set of tasks. The "repercussions that matter" typically involve

interactions between various steps in the plan proposed thus far. The time map represents

how the proposed plan might turn out if it was executed as is. In planning the TMM
assists in choosing more detailed accounts of individual tasks, and in detecting interactions

between tasks. Chapter 5 describes how temporal imagery can be applied in the design of

systems for solving robot problem solving tasks.

3.8 Reasoning about choices in planning

The problem of making choices is central to automated reasoning. Choosing the right

alternative (plan, hypothesis, context, or whatever) generally requires considerable compu-

tation, foreknowledge, or some combination of the two. There are times, however, when it

s convenient to delay making a choice, thereby leaving one's options open. The hope is

that, in the course of subsequent planning and information gathering, the right choice will

become clear. It is often important to do more than simply put off making a choice. In

order to decide upon a reasonable course of action, it is useful to keep track of several al-

ternatives simultaneously. In the course of refining these alternatives, it may be discovered

that some alternatives complement one another (providing opportunities to consolidate ef-

fort and conserve resources) while others interact disadvantageously (leading to undesirable

consequences of one sort or another). Such discoveries provide direction in choosing a 'rea-

sonable" set of alternatives. In general, the alternatives suggested by a given situation are

abundant. Keeping track of large numbers of alternatives eats up storage and processing
time, and that presents us with a bit of a dilemma: it's hard to make choices and it's expen-

sive to put off making them. Since planning itself consumes resources (most notably time

__" " . . . . -- * . - ". '
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and storage) it behooves us to come up with a reasonable strategy for extricating ourselves

from this dilemma. The general form of such a strategy is clear:

If there are two or more alternatives, both of which have been demonstrated

to pay off in circumstances "similar to those at hand", but choosing the
"wrong" one will adversely affect the outcome of the overall plan, then split

the world and consider both alternatives simultaneously. Upon expanding

certain other tasks which, for example, vie for common resources, make

a decision on the basis of whatever opportunities for 'Loptimization' have

presented themselves, and eliminate from consideration the aternaties ta

Iwere not chosen.

As a simple example, suppose that a planner has several jobs that can be handled by

either a lathe or a milling machine. In many situations, it won't be clear how to go about
using the available machines efficiently without actually exploring some of the possibilites

(i.e., expanding the tasks in various ways). One strategy might be to expand the tasks

considered first both ways (using the lathe as one alternative and the milling machine

as the other). When the other tasks are considered, it should be clear which of the initial
expansions are better. By having the alternatives laid out before you, it is obviously simpler

to take advantage of opportunities for consolidating effort and conserving resources.

Of course, the details involved in making such strategies work in practice are likely
to be messy. Determining when to consider more than one alternative, what makes one

alternative better than another, and when to eliminate all but one competing alternative

from consideration will require a considerable amount of domain specific knowledge. Here

we will be concerned primarily with methods for efficiently representing and maintaining a

number of alternatives simultaneously.

In addition to reasoning about alternative outcomes that a planner has control over,

it is also useful to keep track of situations that the planner has little or no control over,

but whose outcomes it is unsure about. By anticipating various outcomes, a planner might

prepare itself to deal with such situations no matter how things turn out.

Consider the following scenario. A major manufacturer of personal computers, Mega
Computers, is considering bids from semiconductor firms for memory chips for its new
business computer. One of the companies submitting bids, call it CI, has faster chips than

any of its competitors, but it's not clear that this young company will be able to meet
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the necessary production requirements. Another company 02, which you happen to own

stock in, is also submitting a bid, but with rn-of-the-mill chips. 02, however, will have

no trouble keeping up with Mega Computer's production schedule. You've been told by

insiders that Mega Computer* will either buy from C1 or from C2, but that it is waiting

for the results of a survey (concerning whether or not buyers are sufficiently influenced by

machine speed specifications) before it makes its final decision. You want to prepare for

either outcome. If C1 gets the contract, its stock will rise sharply and probably keep on

climbing for a considerable period. You want to be prepared to take advantage of this so

you tell your broker to liquidate some other stocks in preparation for a quick purchase. If,

on the other hand, 02 gets the contract, its stock will probably experience a brief upswing

and then return to previous levels. You'd just as soon have your money invested in more

ambitious companies, so you tell your broker that in the event 02 gets the contract, sell

your stock as soon as 02 appears to peak.

In this scenario you are unsure about the outcome of a particular event. In order to

be ready to respond to either of the two anticipated outcomes, it is necessary to do some

preliminary work to guarantee your preparedness (e.g., liquidate some stock to provide
working capital or notify your broker to sell). You might also want to put in motion certain

tasks to determine which of the two outcomes will actually occur (e.g., try to get hold of

the results of Mega Computer's survey or even conduct your own survey). You might even

try to influence the outcome (e.g., educate the business community in the advantages of

high speed machines).

The same techniques used for handling disjunctions of the sort illustrated in the above

example have also been applied to reasoning about counterfactuals [Dean 85). Suppose that

you're trying to prevent the occurrence of an event E.. In order to ensure that an action A

is effective in preventing E, you have to see to it that in the situation where you actually

execute A, E fails to materialize. In order to monitor the warrant for A, you want to make

sure that if you fail to execute A, then E will indeed occur.

The solution proposed here for handling the above reasoning tasks revolves around

maintaining several (partial) descriptions of the world simultaneously. The key to doing

this efficiently involves a method of labeling assertions with the choices that they depend

upon. This section should give the reader a feel for some of the issues involved and a

glimpse of some of the problems that still have to be solved before these techniques are

shown to have any advantage over more traditional approaches for dealing with choices
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(e.g., backtracking or other sorts of enumeration schemes).

3.8.1 Maintaining several partial world descriptions simultaneously

A partial world description is just a set of event and fact tokens together with certain
constraints on their occurrence and duration. Such a description may describe a large

number of possible outcomes involving various restrictions on the partial order of tokens.

The time map, as it has been presented so far, essentially maintains a single partial world

description (or PWD). The only disjunctions represented in a single PWD involve the

order of tokens, and a partially ordered time map provides a weak basis for projecting

consequences. If there are two tokens unordered with respect to one another, one of type P

and a second of type (not P), then it may be impossible to determine whether or not P is

true at a point in time following both tokens.

Traditional context mechanisms, such as the one employed in the SIPE planner IWilkins 84),

provide a suitable basis for projecting consequences, but are inappropriate for effectively

reasoning about alternatives. In the context-based approach, a planner is forced to con-
struct a context corresponding to a given set of choices. Then, in order to notice interesting

consequences of that set of choices, the planner must choose to reason in that context and

ask the right questions. What we really want is a mechanism that suggests a suitable con-

text (or set of choices) in response to a general question about what is possible given the
options currently available. If I have the option of either eating at home or going to a

resaurant this evening, and I want to know if I'll be at home to receive a long distance call
between 5:30 and 6:30, then I would like to notice that this is possible only if I choose to

eat at home.

Not all partial world descriptions are worthy of consideration. To begin with, mutually

exclusive alternatives should be kept distinct (e.g., I can't both drive to work and take the

bus). In addition, I will probably want to rule out certain combinations of alternatives

(e.g., I can't drive to work and expect that my wife will be able to pick up her mother at

the airport). A single alternative is referred to as an option. A set of mutually exclusive

options is referred to as a choice set. A conjunction of options to be ruled out is called a
nogood. A choice ossignment involves assigning a boolean value L (for choose this option)

or 0 (for don't choose this option) to every option being considered.

The way in which we keep track of several partial world descriptions simultaneously
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involves labeling all assertions (i.e., ddnodes) in the data base with boolean combinations

of options. An assertion is licensed by a given choice assignment just in case the assertion's

label evaluates to 1 under that assignment. Choice sets and nogoods constitute constraints

on what is considered to be an admissible choice assignment. Exactly one option of a choice

set must be assigned 1; all others must be assigned 0. At least one option of a nogood must

be assigned 0. An admissible choice assignment is one that satisfies the constraints defined

by the choice sets and nogoods.

The TMM employs a specially designed RMS (described in Section 4.6) to maintain

a consistent and well-founded labeling of all assertions in the data base. Defining exactly

what is meant by consistent and well-founded in this context will have to wait until Chapter

4. For our purposes, a labeling is consistent and well-founded just in case the label of each

assertion in the data base accurately reflects the dependence of that assertion on the current

set of options, as recorded in the network of justifications.

A simple example should help to make this a bit clearer. I'll begin with some program-

ming preliminaries. The function option takes an s-expression designating an option, cre-

ates a ddnode corresponding to that option, and then simply returns the s-expression. The

function option is similar to add except that it doesn't install any justifications. Ddnodes

created by the function option are handled somewhat different from other ddnodes. The

system sees to it that every ddnode that depends, either directly of indirectly, upon a

ddnode corresponding to an option is labeled to reflect this dependence. Options can par-

ticipate in justifications just like any other assertion (e.g., using the answer-support or

for-each-answer macros). The functions nogood and mutually-exclusive each take a

list of s-expressions designating options, determine if the appropriate corresponding con-

straint is consistent with the constraints imposed thus far (i.e., those from other choice sets

and nogoods), returns false if this condition is not met, and returns true and adds the

corresponding constraint if the condition is met.

Suppose that you are considering how to spend your lunch hour and there are two

decisions that you have yet to settle. You're not sure whether to go to the university

cafeteria or to an off-campus diner, and you are undecided about whether to go at noon or
wait until after 1:00 when the lines are shorter. You also know that the cafeteria closes at

1:00. To specify these conditions:

• , .....- ,.......................-.... -. . .......-.-.-.- ........ ,.-... ............. ..... -........ ,.-



CHAPTER 3. TEMPORAL DATA BASE MANAGEMENT 126

Data dependency nodes:
n1 - (a lunch-spot cafeteria)
n2 -)(a lunch-spot diner)
n3 -> (lunch-during prime-time)
n4 -) (lunch-during off-peak)
n5 -> (impatient (management lunch-spot))
n6 -)(free-ref ills lunch-spot)
n7 -- (good-company lunch-spot)
n8 -- -Cinger-over-lunch lunch-spot)

Inferential connectivity involving ddnodes other than options:
Node: Justifications: Label:
n5 (({n2}{)) ((Wn})))
n6 (({nl}{)) ({l{)
n7 ((Wn})))({Z(
a$ (((n6,n7}{n5})) (({n1.n3}{n2})))

Admissible choice assignments:
(( => ni) (0 -> n2) (1 => W3 (0 => n4))
M( => ni) UI > n2) (1 -> n3) (0 => n4))
{(0 => n1) (1 => n2) (0 =>n3 (1 => n4))

Figure 3.21: Simple dependency structures involving options

Figure 3.22: Dependency network for the lunch example

...........................
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(mutually-exclusive (list (option '( lunch-spot cafeteria))
(option '(= lunch-spot diner))))

(mutually-exclusive (list (option '(lunch-during prime-time))
(option '(lunch-during off-peak))))

(nogood '((= lunch-spot cafeteria))
(lunch-during off-peak))

For some of the alternatives there are implications. If you go to the cafeteria, you can get

free refills on coffee. If you go to the diner you won't be able to dawdle, as the management

doesn't appreciate people tying up counter space. If you eat during prime time, noon until

about 1:00, you're assured of meeting someone to strike up a conversation with, no matter

where you go.

(answer-support (* '(f lunch-spot cafeteria))
(add '(free-refills lunch-spot)))

(answer-support (* '(= lunch-spot diner))
(add '(impatient (management lunch-spot))))

(answer-support (* '(lunch-during prime-time))
(add '(good-company lunch-spot)))

Finally, we have the inference encoded in the data dependency network that, if you

have good company and free refills on coffee, and you have no reason to believe that the

management of the spot you've chosen for lunch is pushy, then you can rely upon a leisurely,

lingering, meal.

(for-first-answer
(fetch '(and (free-refills lunch-spot)

(good-company lunch-spot)
(consistent (not (impatient (management lunch-spot))))))

(add '(linger-over-lunch lunch-spot)))

The ddnodes, their justifications, and their labels are displayed in Figure 3.21 and the

data dependency network is shown in Figure 3.22. Consider the label of n8. This can be

interpreted as saying that you can linger over lunch if you choose the cafeteria and not the

diner and go during the prime time hours. The label tells you what choices you must make

to believe the assertion. Figure 3.21 also shows all of the admissible choice assignments.

The function extract-options takes an object of data type ANS and returns a boolean
formula (in disjunctive normal form) of s-expressions indicating options corresponding to

the conjunction of all the labels of in-justifiers indicated by the ANlS and the negation of the

labels of out-justifiers indicated by the ANS. In the following code fragment:

(for-first-answer
(fetch '(linger-over-lunch lunch-spot))
(extract-options ans*))
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the call (extract-options ans*) returns:

(or (and ( lunch-spot cafeteria)
(lunch-during prime-time)
(not (= lunch-spot diner))))

This sort of interchange might be used to provide a planner or diagnostician with some

basis for choosing between its alternatives.

Reasoning about alternatives in problem solving is a continuous process: as we encounter

uncertainty in the world we consider various alternative predictions. These alternatives tend

to complicate our understanding of the world; they make reasoning more expensive and

decisions more difficult, but they also provide us with options. As we gather new evidence

and notice interactions between our beliefs, we occasionally rule out certain alternatives that

no longer appear likely or that are less appealing than their competing options. This serves

to simplify the world and reduce complexity. Once you complicate the world by introducing

alternatives, you must be alert for opportunities that will allow you to make a choice
between them. Ruling out alternatives is accomplished using the function nogood. For

example (nogood '((lunch-during prize-time))) has the effect that every admissible

choice assignments must assign (lunch-during prime-tine) the value 0 and (lunch-

during off-peak) the value 1. Notice also that this constraint, in conjunction with the
constraints already in force, also implies that that every admissible choice assignments must

assign (a lunch-spot diner) the value I and (a lunch-spot cafeteria) the value 0.

The TMM can perform this service of ruling out options (and ruling in others) on the

basis of the constraints provided in nogoods and choice sets, but there are a number of

complications. First of all, the general problem of determining whether a set of boolean

formulae (nogoods and choice sets) is satisfiable is intractable (exponential in the number of

boolean variables or in this case options). A second problem concerns what to do when you

discover that there are no admissible choice assignments. How do you go about considering

new alternatives? The solution to the first problem is simple. The number of alternatives

must be kept small. But this just serves to make the second problem more acute. The

mechanism presented here provides a means for implementing certain heuristic techniques

for exploring sets of alternatives efficiently. If those techniques fail, then you're still probably

better off than you would have been without those techniques. In future work I hope to

demonstrate how the information gathered in exploring several alternatives simultaneously

can prove useful in recovering from planning failures in novel situations. In the mean time

I'll just assume that you never run out of alternatives.

. . . . ..-
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In maintaining and reasoning about several alternatives simultaneously, we're not likely

to be interested in a solution that enumerates (either in time or space) all possible combina-
tions of choices. Of course, this is difficult to prevent in general. In the worst case, a set of n
choices involving two alternatives apiece will result in something on the order of 2"' distinct

possibilities. Storing each of these separately is prohibitive. For the most part, alternatives

involving separate choices interact minimally, if at all. In actual practice, the storage re-

quired to represent the possibilities involving a set of n binary choices is generally no worse

than polynomial. Only in extreme cases are we forced to absorb an exponential overhead.

A reasonable solution to the problem of representing several alternatives simultaneously
should detect and keep records of only those differences that serve to distinguish various

possibilities. For instance, if one of my options involves driving the car to work instead of
riding the bus, then whether or not the car is in the driveway may have no bearing on any

of my other plans. If, on the other hand, my wife is undecided about whether to pick up

her mother at the airport or have her ride the limousine, then it is probably worth noting
that the former is likely to fail in the event that I choose to drive to work. The TNIM can

save a great deal of storage by only noting what things differ between partial world descrip-

tions. All of the assertions that remain invariant across sets of partial world descriptions

are shared. Each individual PWD represents a virtual copy [Fahlman 791 of these shared

assertions along with a set of modifications and additions peculiar to that particular PWD.

3.8.2 Temporal reasoning involving sets of alternatives

All of the basic functionality regarding temporal reasoning in time maps involving a single

partial world description must now be extended to reasoning about several partial world

descriptions simultaneously. The machinery for exploring hypothetical situations, reason-
ing with incomplete information, and noticing particular consequences must now take into

account sets of alternatives licensing various inferences. In this (sub)section I want to intro-

duce the reader to some of the basic methods for performing temporal inference involving

alternatives. In Chapter 5 (Section 6.4) 1 will demonstrate how these methods might fit
into the design of a general purpose planning system. As usual, most of the discussion will

center around examples.

Suppose that a planner is undecided about whether to use a lathe or a milling machine

for a particular task to be performed in the morning. So it expands two plans: one using

lathe14 and a second using milling-zachiLne3l. Setting up the two exclusive plans is
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Frame of reference: noon Scale: 1.0

idle4l (production-status lathe 14 free)
II ----------------------------------------------------------- )
idle43 (production-status milling-aachine3l free)

task14 (manufacture widget)
I------------- I

inuse9 (production-status millizzg-aachine3l in-service)
------------ I

idle47 (production-status milling-machine3l free)

installation-subtask76 (setup milling-uzachine3l widget)

installed421 (installed jig34 milling-machine3l)
------- ---------------------------------------- )

task13 (manufacture gizmo)
I-------------I

inusel 1 (production-status milling-machine3l in-service)

id1049 (production-status milling-machine3l free)
II----------------------)

service35 (routine-service milling-tachine3l)
I----------

Figure 3.23: Time map in which the milling machine option is chosen for taskl4
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Frame of reference: noon Scale: 1.0

idle4l (production-status lathe14 free)

taskl4 (manufacture widget)
------------ I

inuse47 (production-status lathe14 in-service)
---------

idle78 (production-status lathe 14 free)
I I---------------------------------------- >

idle43 (production-status milling-machineal free)
---------- -------- I

task13 (manuacture gizmo)
------------

inusell (production-status silling-uackiue3l in-service)
I I----------- I

idle4l (production-status millizzg-machin*3l free)

service35 (routine-service milling-machine3l)
I---------

Figure 3.24: Time map in which the lathe option is chosen for task14
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accomplished as follows:

(mutually-exclusive (option '(use lathe-plan taskl4))
(option ' (use milling-machine-plan taskl4)))

(answer-support (+ '(use lathe-plan task14))
code-for.ezpandsng-taskl4-.uth-the-lthe-pLan)

(answer-support (+ *(use milling-machine-plan task14))
code-for-ezpanding-takl4-wsththe-milling-machine-plan)

Now let's suppose that one subtask in the expansion of the plan for using the milling

machine has the effect that a certain fixture Jig34 is installed in milling-machine3l. At

some later point the planner is interested in a plan for some other task tasc63 that would
be facilitated by having j igl4 already installed. The planner might make the following

query:

(for-each-ann (fetch (and (tt (begin task63) (end task63)
(installed Jig34 aillng-machlin.31))

additional-anteccdent-comdithov))
*ome-deciiion-mrsking-code)

If the query succeeds by relying upon the token corresponding to the effect in the
expansion of task14 with the milling machine plan, then the planner should be aware

of the fact that (use mill ing-machine-plan task14) is an option that has not been

decided upon; the planner should obviously not blithely consent to just any set of options.
If (extract-options anso) were executed in the context of 8ome-deciason-mkimg-code it
would return (or (and (use milling-machine-plan taskl4))) '. If the planner really
wants to take advantage of the fact that the milling machine plan for task3l installs J ig34,
it might at this point commit to this plan and dispense with thinking about the alternative

lathe plan for the same task. Commitment of this sort corresponds to ruling out one or
more of the alternatives. The system uses this as a cue to perform some house cleaning. For

instance if the planner executed (nogood '((us* lathe-plan task14))), the assertions
corresponding to all of the projection and expansion steps involved in reducing taskl4

with the lathe plan would be eliminated and all references to the option (us* lathe-plan
task14) would be expunged. Having eliminated (use lathe-plan taskl4) you have, in

effect, committed to ((use milling-machine-plan taskl4)).

In the example above, alternatives are eliminated in the course of hypothesis selection.

It is also often convenient to rule out alternatives in the course of handling interactions.

"Diujunctive normal form is a bit awkward here but still a worthwhile convention t aheet for handling
more complicated situations.
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I'll continue with the same example. Starting with a time map containing one task taskl3

employing silling-sachise3l, suppose that we expand the two different plans for achiev-

ing taskl4. Suppose further that the robot is told that it must schedule routine service

for milling-machine31 before the day is out. There are only two time slots in which the

service task service35 can be performed: early in the morning (coincidently during the

time task14 is scheduled) and late in the evening. These two alternatives are set up as

follows:

(mutually-exclusive (option '(schedule service35 (time-slot 8:00AM)))
(option '(schedule service35 (time-slot 9:00PM))))

(answer-support (4 '(schedule service35 (time-slot 8:00WM)))
(elt (distance (begin service35) *ref*) (minc 4:00) (zinc 4:15)))

(answer-support (4 '(schedule service35 (time-slot 9:00PM)))
(elt (distance *ref* (begin service35)) (zinc 9:00) (minc 9:15)))

It's not possible to provide a clear picture of the resulting time map in a single dia-

gram. There are actually four admissible choice assignments. To show the whole picture

would involve producing one time map for each such assignment. Instead, I have pro-

vided two time maps corresponding to the two most interesting possibilities. Figure 3.23

shows a snapshot of the time map assuming that options (use milling-machine-plan

taskl4) and (schedule service35 (time-slot 8:00AM)) are chosen. Figure 3.24 shows

a snapshot assuming that (use lathe-plan taskl4) and (schedule service35 (time-

slot 8:00AM)) are chosen. Remember, however, that the actual time map combines the

information for all four possibilities in a compact form.

The routine service task is shown in both time maps, but the planner has yet to provide

the details of its execution. So now let's suppose that the planner expands the routine

service task. One side effect of this task is that milling-machine3l is not available for

use (its production-status is of f line) during the interval corresponding to service35.

Unfortunately, the plan of using milling-machine3l for task14 depends upon milling-

machine3l being available for use throughout taskl4, and service35 and taskl4 overlap.

Noticing such interactions is handled in a manner similar to the situation not involving op-

tions. First of all, we assume that the code for expanding plans sets up certain predicates for

monitoring the continued validity of the assumptions implicit in plan selection. In this situa-

tion, I'll assume that the predication (applicable-reduction taskl4) is dependent upon

(production-status milling-machine3l free) being true throughout taskl4. Now we

want to set up a change-driven interrupt, akin to the if-erased demons of Section 5.2, in

order to detect and respond to possible interactions. In dealing with options we're not just
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interested in an assertion becoming OUT. Now we're interested in the choice assignments

which result in its being believable or not. The analogs of it-erased demons in a system
maintaining several partial world descriptions are called if-endangered demons. For exam-

pie, the following demon ensures that the code-to.deal-with-poa8ible-plan-failure. is executed

just in case the assertion (applicable-reduction task14) becomes "more OUT'.

(it-endangered (applicable-reduction ?task)
code-to-deal-with.poaibe-plan-failure8)

By "more OUT" I mean that there is some admissible choice assignment (perhaps sev-
eral) that (applicable-reduction task14) was believable in (i.e., licensed by), but is
no longer. Adding the assertions corresponding to the production-status of milling-

machine3l being off-line throughout service35 results in (applicable-reduction taskl4)
no longer being licensed by the choice assignment in which (use milling-machine-plan
taskl4) and (schedule service35 (time-slot 8:00A)) are chosen. The code-to-deal-
.ith.posibLe-plan-failure8 can determine the "cause' of the possible plan failure using the

function extract-options. In this case, executing (extract-options ans) in the con-

text of code-to-deal.with-po8aible-plan-failure would return:

(or (and (use milling-machine-plan taskl4)
(not (schedule service35 (time-slot 8:00AM))))

(and (use lathe-plan taskl4)))

This indicates that there is an applicable reduction for taskl4, just in case either the
lathe plan is used for taskl4 or the milling machine plan is used and routine service for

milling-machine3l is not scheduled for the 8:00 AM time slot. To simply eliminate the

possibility that the routine service task interferes with the milling machine option for the
taskl4, the planner could execute the following call to nogood:

(nogood '((use milling-machine-plan taskl4)
(schedule service3S (time-slot 8:00AM))))

The planner could also simply choose to eliminate either the option to use the milling
machine or the option to perform the routine service in the 8-00 AM slot by executing one

of:

(nogood '((use milling-machine-plan taskl4)))

(nogood '((schedule service35 (time-slot 8:00AM))))

As usual, the decision concerning how to respond to a possible interaction is not simple,
and the responsibility for making such decisions lies with the planner, not with the TMM.
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3.9 Summary

This chapter has provided an overview of the mechanics of temporal imagery. A language

for constructing time maps and querying the TMM about their contents was presented,

and elementary examples of its use described. An effort was made to show the reader

how the TMM supports projection and refinement in the context of a general approach to

automated reasoning described as "shallow". The idea behind shallow temporal reasoning
is that prediction and reflection proceed in small steps. Possible sets of modifications to

the data base are proposed on the basis of what is already known or what is possible given

what is known. Each set of modifications constitutes a hypothesis concerning how the world

is. The relative merits of these hypotheses are considered and compared, and one is finally

selected. The modifications are incorporated into the time map and their repercussions

are determined and dealt with. No individual inference is expected to require a great deal

of computation, and generally speaking each individual change is minor. The approach

assumes that in the main your first guess is likely to be right and that correcting its minor

deficiencies won't require a major overhaul of the data base. Patching is always preferred

over scrapping.

The TMM is a data base management system. In designing this system a number of

assumptions were made about its potential users. First, the user is not likely to be in

possession of complete knowledge about all of the entities stored in the data base. The

query mechanism is designed to conduct a dialogue with the user asking for assistance in
cases where a step in the deduction is only consistent with the information in the database

but not necessarily implied by it. Second, the user is assumed to be fallible and liable to

make assertions that contradict earlier ones. He is, however, interested in the continued

validity of certain of his beliefs, especially when those beliefs are critical to the success of

a plan or the understanding of some phenomenon. Our third assumption, then, is that if

the user is interested in the continued validity of a given proposition, then he will make use

of the TMM's change-driven interrupt facility to take appropriate actions in the event that

the validity of that proposition is threatened. To support this functionality, the TMM has

to keep track of the reasons why a proposition was believed in the first place and under
what conditions it will cease to be believed. The TMM provides the machinery for keeping

track of temporal data dependencies using a generalization of what are called protections in
the planning literature. Finally, if the user finds himself in a situation where some number

of his beliefs are threatened, the TMM makes it possible for the user to modify the data

t . . . . . . . .

. . . . ."
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base in order to reason about a suitable patch. The ability to efficiently modify the data

base and keep track of the repercussions of changes is critical to temporal imagery.

-. ~~ .. .* .. .. . ...* * . . . .
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Chapter 4

Implementation

4.1 Introduction

The time map, together with the routines that support shallow temporal reasoning about

time, constitute a special-purpose data base management system. Many of the issues that

are important in static data bases are also relevant here. In addition, however, there
are a number of implementation issues that arise specifically due to the temporal aspect

of items stored in the data base. One such issue concerns the indexing of temporalized
ssertions (i.e., time tokens) in order to expedite fetches. This is critical in determining

the "when' of fact tokens: the duration of a time token denoting a particular instance of a
fact becoming true and its offset relative to other points in the time map. One of the most

common operations performed by the time map management system involves finding an

interval satisfying a set of temporal constraints such that some fact or conjunction of facts

is believed to be true throughout that interval. This operation requires that it be cheap

to determine the best bounds on the distance separating pairs of points in the time map.

Another issue concerns how one deals with defeasible predictions. How can we extend the

functionality of data dependencies in static data base systems [Doyle 79J in order to handle

temporalized ssertions?

This chapter will deal primarily with low-level implementation details, but it will be

helpful to review what "higher" level functionality we are trying to support. Below are

listed some of the steps involved in shallow temporal reasoning along with specific functions
that the time map management system must support in order to facilitate these steps:

137
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1. hypothesis generation: The system has to be able to handle a range of queries. In

particular, it must be able to deal efficiently with conjunctive queries of the form (tt

?ptl (and P1 ... P.)). The system is also responsible for setting up dependencies

in order to keep track of the warrant for believing assertions made on the basis of the

response to queries.

2. hypothesis selection: The selection process is largely domain-dependent, but there are

certain general requirements:

(a) The system must be capable of constructing and isolating two or more separate,

and possibly contradictory, hypotheses. Recall that a hypothesis is essentially

a set of constraints on the existing partial order of facts and events in the time

map such that the constraints are consistent with the existing partial order.

(b) Because a given hypothesis may commit the user to additional constraints, the

system must inform the user of the added commitment and provide some means

for investigating the possible implications of making such a commitment.

3. projection and refinement: These operations entail the addition of new time tokens and

constraints. Of these two, the addition of new constraints is the most critical. It is the
&when' of a time token that is of primary interest, and propagating new constraints

is an important part of noticing and responding to certain configurations of facts and

events. These operations are also likely to introduce what have been referred to as

apparent contradictions: pairs of contradictory tokens that are ordered with respect to

one another such that their intervals might possibly overlap. The system is reponsible

for resolving such contradictions (where possible) by adding additional constraints to

restrict the "when" of the earlier occuring token.

In addition to what was termed "controlled forward inference' of the sort carried

out in shallow temporal reasoning, there are also the temporal analogs of forward

chaining rules in static data bases. In the previous chapter, I called these temporal

forward chaining rules "auto-projection'rules. Such rules (e.g., (-),t (and P Q) R)

and (pcauae (and P Q) E It)) are employed to capture certain logical and physi-

cal laws of the domain. They can assist in causal analysis and have been used to

implement a restricted' form of envisionment [delfleer 82).

'This naJysis is restricted in that it is (currently) not possible to reason about feedback.

.......'; .... - ;,.; -' ".., -.-. ".. .-............ .... ....... " ;...
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INTERFACE TEMPORAL

1. QUERY INDEXING DATA
PROCESSING

- > 2. AUTO-PROJECTION
RULES ,_BASE

3. CHANGE-DRIVEN T1VS I
INTERRUPTS (=> Cu)

Figure 4.1: TMM architecture

4. handling interactions and assumption failures: Many assumptions may be undermined

by a given projection/refinement step. How does the user deal with the incoming

barrage of information? What if while dealing with one failure, additional failures

occur or other pending failures are resolved thus no longer requiring attention?

In order to describe how these rather high level operations are facilitated, it is necessary

to understand how a number of more primitive operations are carried out by the TMM; in

particular it is important to understand how the system:

1. determines best estimates on point-to-point distances

2. detects and resolves apparent contradictions

3. monitors protections

4. propagates constraints

5. caches certain derived point-to-point distances to expedite fetches

The first operation is employed frequently in performing the deductions required for

processing temporal queries. Time tokens are indexed syntactically by their types and tem-

porally by the network of constraints. The latter index constitutes the "when" or temporal

. . . . ...
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extent of a time token. Computing this index involves determining the best estimates of

the distance separating pairs of points in the time map. Operations two through five are

handled by a special purpose reason maintenance system (RMS) [Doyle 80] specifically de-

signed for managing a set of temporalized beliefs. Section 3.2.3 described a general purpose

reason maintenance system modeled after Jon Doyle's design. To distinguish the two types

of systems, I will refer to a Doyle-type system as a static RMS (or SRMS), and the special

purpose system as a temporal RMS (or TRMS). I will also continue to use the generic

term "reason maintenance system" (or RMS) to refer to system's like Doyle's [Doyle 791,

McAllester's [McAllester 80], and deKleer's [deKleer 84]. Reason maintenance systems are

used to keep track of which facts in a data base are currently believed to be true and why2 .

Knowing which facts are believed to be true is obviously useful; knowing why a fact is be-

lieved helps in generating explanations of program behavior, debugging data bases, and any

number of other handy tasks. The TRMS employs a static RMS as one part of a technique

for handling temporal data dependencies. Figure 4.1 shows a rather simplified picture of

the TMM architecture.

In the TRMS, a static reason maintenance system is used to maintain a set of timeless

beliefs that refer to temporal instant and intervals. These beliefs will include items that

you're already familiar with from previous chapters (e.g., constraints, time tokens, and

protections) as well as new constructs that are generally hidden from the casual TMM

user. Using these basic elements, I will describe how the TMM sets up temporal data

dependencies, processes queries, and handles changes to the data base. This last involves

updating the status of belief of facts linked by temporal data dependencies. Whether or

not P is believed at a given instant may depend upon whether or not Q, through Q., are
believed during certain intervals. The TRMS has built into it a method for interpreting

temporal information stored in the static RMS and computing the consequences of changes

made by the user. Changing a single constraint can result in radical changes to the data

base. The TRMS update algorithm is responsible for making those changes. This algorithm

is probably the most important idea developed in this chapter, and a considerable amount

of time will be spent providing background material, describing the actual algorithm, and

proving it correct.
2This applies to justification-based systems like Doyle's or McAllester's. It's not quite appropriate for

assumption-based systems like deKleer's. DeKleer's system essentially keeps track of the assumptions
under which a given fact would be true given that the assumptions were true. See jdeKleer 641 for a
discussion.

* . . . - . . .......-...............................
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In the following, I will assume that the reader is familiar with the basic ideas employed

,'."in static reason maintenance systems. The TRMS used in the current implementation

*' of the TMM is actually built on a hybrid RMS which combines features of McDermott's

JMcDermott 83] and deKleer's [deKleer 84] systems in order to reason about sets of alter-

natives simultaneously. The details of this hybrid do not affect the discussion of the TRMS
in any substantial way and hence I have chosen to begin by describing the TRMS in terms

of a Doyle-type RMS in order to ease the burden on the reader. In Section 4.6 I'll describe

the hybrid system in detail. In particular, I will present the requisite algorithms and point

out how the implementation employing the hybrid differs from the one described in earlier

sections.

This chapter is a compendium of techniques and design decisions. The bulk of it will

describe how time maps are implemented and the special purpose data dependency system

which supports a form of temporal reason maintenance. This chapter is not meant as a

recipe to follow in building a TMM. Rather, it discusses the main issues and strives to point

out both the strengths and weaknesses of one particular implementation.

4.2 Time map data types and data structures

As might be expected, there is a close correspondence between the ontological commitments

outlined in Chapter 2 and the data types used in the actual implementation. The time map

consists of points and constraints upon the distance separating pairs of points. The time

map can be viewed as a graph with points as vertices and constraints as directed edges
labeled with an upper and lower bound on the distance separating the two points the edge
connects. The most important data structures from the user's point of view are time tokens.

The corresponding data type is TOKEN. An object of data type TOKEN has three slots that we'll

be considering: begin, end, and schema. The first two are objects of data type POINT. The
schema slot is an object of data type PROP (i.e., a LISP s-expression (a finite non-circular

list structure)) that denotes the (logical) type of which the TOKEN is a (logical) token and is
employed by the system to index the TOKEN syntactically in a discrimination network. If the

symbol service3l does not already designate a TOKEN, asserting (time-token (routine-

service lathel4) service3l) will result in the creation of a new object of data type

TOKEN with schema (routine-service lather4). The symbol servicel is used to refer

.o-J
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to the new object in LISP as well as in the deductive retrieval system3. In a query, the

term (begin service3l) refers to the object of data type POINT that corresponds to the

begin slot of service3l. The two POINTs, (begin .ervice3l) and (end service3l),

were created when the assertion was made. The predicates begin-token and end-token

allow one to go from a POINT to a TOKEN and vice versa. The query (begin-token ?pt

service3l) will succeed with ?pt bound to something like POINTI46 where POINT146 and

(begin service3l) denote the same thing. Similarly, (begin-token POINT146 ?tok) will

succeed with ?tok bound to service3l.

The asserting (time-token (routine-service lathel4) service3l) also creates a

new ddnode with propositional content corresponding to form of the assertion. The new

ddnode has a justification constructed from the current answer as described in the previous

chapter.

In the current implementation it is assumed that all tokens have schemata that contain

no variables. The only exception to this involves the use of temporally &gated' forward

chaining rules introduced in Section 3.7. If you allow variables in token schemata, or you

employ criteria for determining whether or not a pair of tokens contradict that make use of

inconstant properties of terms appearing in token schemata, then persistence clipping be-

comes considerably more complicated. I won't be considering such cases in this dissertation

(but see Section 6.2).

A constraint is implemented as a pair of objects of data type CONLINK. Each CONLINK

designates a directed edge between a pair of objects of data type POINT. An object of data
type CONLINK has slots for the POINT object that the CONLINK object ends at and two slots

low and high for the lower and upper bounds4 on the distance separating the two points.

aI don't want to bring in the details of the underlying USP system and its conventions for defining data

types and creating and accessing slots in structures, so I will confine my attention to the deductive retrieval
system ts much as possible. For the curious, data structures like tokens and points are implemented as
interned symbols with their slots accessible from their property lists. This eliminates a number of problems
associated with unification and syntactic indexing that would otherwise arise had we chosen to use vectors,
hunks, or some other more exotic (though possibly more efficient) means of implementing data structures.

"The data type of these bounds differs depending upon the implementation. In the implementation used

in the examples in this dissertation, the bounds are either integers (data type FIIIUN) or elements of a

small set of objects of data type SY O L. These symbols allow us to represent either negative or positive
"unboundedness" (respectively sneg-inf* and *pos-iaf*) and the notion of infinitessimally small in
either the negative or positive direction (respectively *nag-tiny* and *pos-tinys). The system employs

a set of routines for adding and subtracting such objects in a consistent manner. The implementation
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Objects of type POINT have a slot, constraints, which provides access to all CONLINKs that

begin at that POINT object. Asserting (elt (distance ptl pt2) 4 5) would result in the

creation of two CONLINK objects. One would end at pt2 and be stored at ptl under the

constraints slot of that POINT. Its lower and upper bounds would be 4 and 5 respectively.

The other CONLINK would end at pti, be stored at pt2, and have lower and upper bounds

of -5 and -4 respectively. CONLINK objects also have slots used by the system to guide

search. There are two such slots both of data type FIXNUX; one is a general weighting slot

and the second is a slot that records some indication of the time at which the CONLINK

object was created (i.e., processor time).

Every constraint has associated with it a ddnode. The propositional content of such

a ddnode corresponds to the form of the associated assertion (e.g., (elt (distance ptl

pt2) 3 4)). The label of this ddnode determines whether or not the corresponding di-

rected edges in the time map (i.e., CONLINKs) are traversible by the routines employed in

propagating constraints and determining the "when" of time tokens. Each time you assert

a constraint, the system creates a ddnode, just as it does when you assert a new time to-

ken. There is one difference, however, worth noting. The ddnode corresponding to (elt

(distance ptl pt2) 3 4) is not identified with the assertion (Wit (distance ptl pt2)

3 4). So, for example:

(answer-support (+ '(elt (distance ptl pt2) 3 4)) code)

does not result in the ddnode created at the time (Wit (distanct ptl pt2) 3 4) was

asserted being added to the support of the current answer. Constraint ddnodes are not easily

accessed by the user. This means that a particular ddnode corresponding to a constraint

can't be incorporated into a justification using the techniques that I've described thus

far. The reason is simple: it is seldom, if ever, necessary in practice to construct such

justifications, and I wanted to avoid the considerable cost of indexing the (typically) large

number of constraints involved in constructing time maps. If all you're worried about is

that assertions occurring in code depend upon (cit (distance ptl pt2) 3 4) being true,

then there is a simple alternative. One can set up such a dependency using:

* (for-first-answer (fetch '(elt (distance ptl pt2) 3 4)) code)

however, the user has no control over which ddnodes corresponding to constraints are used

in augmenting the current answer.

details are unintetesting and will be ignored.

.* .I
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Constraints establish a network of temporal connectivity used for determining relation-

ships between the intervals associated with time tokens. For reasons that will hopefully

become clear in the next section, the inferential connectivity among time tokens established

in the data dependency network and the temporal connectivity between those same time

tokens established in the time map can interact in ways that make it difficult to guarantee

that the TRMS update algorithm will always terminate. In the next section, I'll develop

the idea of temporal data dependence, describe the temporal reason maintenance system in

some detail, and provide a criterion under which we can guarantee that the TRMS algorithm

will terminate correctly.

4.3 Temporal reason maintenance

The previous chapter introduced a number of functions that the time map management
system should support. The system was advertised as performing temporal reason main-

tenance. In order to understand what that might entail, I introduced the notion of an

apparent contradiction and suggested that it was the responsibility of the system to resolve

apparent contradictions where possible. The basic task of the TMM is the same as that

for a conventional (static) reason maintenance system, namely, to keep track of the condi-

tions for belief. In a temporalized data base, the conditions for belief are somewhat more

complex than in the static case. A (temporal) condition for belief is generally something of

the form: there exists a token asserting P that begins before a given interval and possibly

persists throughout that interval. This sort of condition was referred to as a protection.

Protections are, like Doyle's assumptions, nonmonotonic in that they can be undermined

by the addition of new information. A protection can fail as a result of either adding or

removing a constraint. It was shown that resolving apparent contradictions can result in

protection failures. From the user's perspective the task of a temporal data dependency

system is to detect when an assertion is no longer justified and assist the user in responding

in an appropriate manner. The rest of this section is devoted to explaining how the sys-

tem detects and resolves apparent contradictions and detects and responds to protection

failures.
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4.3.1 Apparent contradictions

Recall that two tokens were said to be apparently contradictory if they satisfied the following

criterion:

(C- (apparent-contradiction ?tokl ?tok2)
(and (time-token ?p ?tokl)

(time-token ?q ?tok2)
(contradicts ?p ?q)
(strict-elt (distance (begin ?tokl) (begin ?tok2)) ?lovl ?htghl)
(=< 0 ?lovl)
(strict-elt (distance (begin ?tok2) (end ?tokl)) ?lov2 ?high2)
(( 0 ?high2)))

It is the responsiblity of the system to resolve such situations by constraining the earlier

token to end before the later one. The hard part, however, is noticing that resolution is

required in the first place. Adding new tokens alone does not result in apparent contra-

dictions. It is the addition of new constraints that the system has to be alert to. Every

additional constraint results in new paths through the constraint network. Some of these

new paths may enable the system to deduce new apparent contradictions. Noticing this
efficiently is rather tricky.

The apparent contradiction criterion can be broken down into three tests: (1) do the

two tokens contradict one another? (2) does one token precede the other? and (3) assuming

that one token does precede the other, could the earlier token possibly overlap the later

token? The result of the first test can be established once and for all at the time new tokens
are created. This is because time token schemata contain no variables and contradiction

criteria do not depend upon properties of terms in schemata that change. The third test

is not performed in the current implementation. If two tokens could overlap, then adding
the appropriate constraint will eliminate the possibility. If the two tokens can't overlap,

then adding a constraint that ensures this fact shouldn't hurt. The second test is used to

determine whether or not the two tokens possibly overlap.

When a new token is asserted, the TMM finds all the tokens that contradict it (actually

it only finds a limited subset of such tokens, but I'll get back to this shortly). For each pair

of contradictory tokens ti and t2 found in this way, the TMM creates a pair of what are
called clipping constraints. For the tokens t1 and t2, the two clipping constraints would

be (pt< (end ti) (begin t2)) and (pt< (end t2) (begin ti)). The purpose of the
clipping constraints is to eliminate an apparent contradiction should one be detected. (When

4.* "
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Two situations resulting in apparent contradictions involving ti and t2:

ti P
II -------------- >

t2 (not P)
i ..------------------ >

t2 (not P)
II------------------

ti P
II ------------------

Data dependencies used for resolving apparent contradictions:

ddnode: associated data type: corresponding datum:
n1 TOKEN (time-token P ti)
n2 TOKEN (tine-token (not P) t2)
n3 TCONDIT (pt< (begin tokenl) (begin token2))
n4 TCONDIT (pt< (begin token2) (begin tokenl))
n5 CONLINK (pair) (pt< (end tokenl) (begin token2))
n6 CONLINK (pair) (pt< (end token2) (begin tokenl))

n5 has the justification ((Wi. n2. n3}O)
n6 has the justification ({.nl n2, n4}})

Figure 4.2: Dependency relations for managing persistence clipping

.. *
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the end of one token is constrained to precede the beginning of a second (contradictory)
token the sescond token is said to clip the first.) To make this work, the TMM adds a

special justification to each clipping constraint in accordance with the second of the three

tests described above. The easiest way to understand this is by looking carefully at the

structures and dependencies built by the TMM for the pair of contradictory tokens ti and

t2.

First, suppose that tl and t2 have corresponding ddnodes nl and n2. The system

constructs two additional ddnodes n3 and n4 corresponding to the predications (pt< (begin

ti) (begin t2)) and (pt< (begin t2) (begin ti)) respectively. These predications

are referred to as temporal conditions and are associated with objects of data type TCONDIT.

The system also constructs ddnodes n5 and n6 corresponding to the clipping constraints

(pt< (end ti) (begin t2)) and (pt< (distance (end t2) (begin ti))). The only

justification for n5 is (ni, n2, n3)()) and the only one for n6 is ((ni. u2. n4})).

Figure 4.2 shows the two situations leading to apparent contradictions involving ti and t2

along with the data dependencies set up to resolve them.

The propositional content of a ddnode associated with a constraint will have the form

(elt (distance ptl pt2) low high). The justification for this ddnode is constructed from

the current answer at the time the constraint is added to the data base. The propositional
content of a ddnode associated with a temporal condition also has the form (elt (distance

ptl pt2) low high), but in this case the justification for the ddnode will be provided by
the system. The system tries to make sure that each ddnode corresponding to a temporal

condition (such as n3 or n4) is IN just in case there is path through the network of constraints

(CONLINKs) whose bounds satisfy the condition corresponding to propositional content of
the ddnode. The TMM is said to manage the "virtual transitive closure' of a set of relations

of which pt< is but one. We'll return to see how this is done after we see how the same sort

of thing helps out in monitoring protections.

I mentioned that the TMM does not set up dependencies to monitor the possibility

of contradictions involving all possible pairs of contradictory tokens. We're interested in

having the system resolve any apparent contradiction that might occur, but we'd also like
to avoid expending a great deal of time and storage worrying about all those contradictions

that are "highly unlikely'. If there are n tokens of type P and n tokens of type (not P),

then there will be on the order of n possible contradictions the system will have to set up

dependencies in order to keep track of. Given that we allow both the addition and deletion

S.- ... . .
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of constraints, coming up with a strategy that is both complete and efficient presents some

problems. How do you tell that two contradictory tokens will never overlap? The obvious

* answer is that you can't tell, but you can enlist the user's help to narrow the range of

possibilities. The technique used in the current TMM places the responsibility on the user

to establish a focus of attention or kernel that restricts attention to a limited subset of

the set of all tokens in the time map. The kernel serves a function similar to that of a

fast associative memory in modem computer architectures. If something is relevant to the

current computation, it is assumed that it will be added to the kernel. Likewise, if something

is no longer of interest, it should be swapped out. Operations on tokens within the kernel

can be performed efficiently since there is less data to search through. The kernel technique

is especially useful in planning applications that interleave planning and execution (see

[Dean 83]). In these applications, the process of swapping tokens in and out of the kernel

can easily be automated. However, as we begin to experiment with applications involving

time maps of increasing size and inferential requirements of increasing complexity, it has

become apparent that there are a lot of issues that still need to be addressed.

4.3.2 Protections

The notion of a protection is strongly connected with planning [Sussman 75). The idea of

- .monitoring a protection came from trying to make sure thta prerequisite task served its
purpose, where purpose was construed narrowly to mean making a fact true over an interval

spanning the main task served by the prerequisite. In the time map we have stretched this

notion to mean simply making sure that some proposition is believed to be true throughout

an interval. Different sorts of protections demand different techniques for handling them.

Suppose that you've planned to install an attachment in a lathe to facilitate some

manufacturing process. Now, due to a new ordering constraint, it turns out that another

task will remove the attachment before it is put to its intended purpose. In this case, we

would use a protection to monitor whether or not a task fulfils its intended purpose. It

would be inappropriate to initiate a new task for installing the attachment. On the other

hand, suppose that you chose a plan on the basis of a conveyor being turned on at 8:00 AM.

The plan gets scheduled for 3:00 PM, but around noon someone shuts down the conveyor

briefly in order to make some minor repairs. The conveyor was only down for a few minutes
and the time map even shows that it will be running at 3.<)0, but a different time token spans
the afternoon hours. In this case it would be convenient if the time map machinery could
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transfer dependence to the later time token and never bother the user about a potential

failure.

The TMM has three different types of protections. The first is called a simple protection,

and since the other two types are just augmented simple protections I will describe simple
protections in some detail before turning to the other two types.

All protections are implemented as ddnodes associated with an assertion of the form
(passume P pt1 pt2) (passume stands for protection assumption).

(define-predicate (pasume PROP POINT POINT))

Every protection has one or more justifications, each of which refers to a specific time
token. A simple protection has only one such justification. The justification is composed

of three additional ddnodes: (1) nl -a time token, call it ti, asserting P (2) n2 - the

node associated with the temporal condition (pt=< (begin t1) ptl) and (3) n3 - the
node associated with the temporal condition (pt< (end t1) pt2). The data dependencies
set up in a simple example of controlled forward chaining are shown in Figure 4.3. The
justification for the ddnode associated with (passume P ptl pt2) is ((n1.n2}(n3)) and

corresponds to an instantiation of the protection criterion:

(C- (passume ?p ?ptl ?pt2)
(and (time-token ?p ?tt)

(ptf< (begin ?tt) ?ptl)
(consistent (pt< ?pt2 (end ?tt)))))

Simple protections will work quite nicely for handling the example dealing with lathe

attachments. You just set up a protection and have it justify something that will execute an
appropriate signal function in the event that the protection fails. In fact simple protections
will work for the other example involving the conveyor if the user doesn't mind being

troubled with false alarms. Let's consider this in a little more detail.

Suppose that assembly-plan34 scheduled for the afternoon depends upon conveyor2
running throughout the interval associated with the plan. You might set this up as:

(for-first-ansver
(fetch '(tt (begin assembly-plan34) (end assembly-plan34)

(operational-status conveyor2 running)))
(add '(suitable-plan assembly-plan34)))
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The following code fragment:

(for-first-answer (fetch '(tt ptl pt2 P))
(add '(and (time-token Q t2) (pt= pt2 (begin t2)))))

given the time map:

ti P
-------------------- >
ptl pt2
------------ I

results in the augmented time map:

ti P
W-1------------------>

ptl pt2
I------------I

t2Q
-------------------- >

and the following data dependencies for monitoring protections:

ddnode: associated data type: corresponding datum:
n1 TOKEN (time-token P t1)
n2 TCONDIT (pt-< (begin token3) ptl)
n,3 TCONDIT (pt( (end token3) pt2)
n4 PROP (passume P ptl pt2)
n5 TOKEN (time-token Q t2)

n4 has the justification ((iii. n2}n3)
n5 has the justification ((n4}{0)

Figure 4.3: Dependency relations for handling protections
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The query will succeed and (suitable-plan assembly-plan34) will be added to the

data base justified by a protection which in turn is justified by the persistence asserting

that conveyor2 is running since early this morning.

You want to be alerted if anything happens to this plan, so you have a change-driven

interrupt set up to react to possible plan failures.

(if-erased '(suitable-plan ?plan)
(some-hairy-debugging-routine ?plan))

Now, suppose that a task is added that shuts down the conveyor (thereby clipping the

persistence which asserted that conveyor2 is running in the morining) and starts it up

a few minutes later after a simple repair (thereby adding a new persistence asserting that

conveyor2 is running at least through the afternoon). Clipping the earlier persistence would

cause (suitable-plan uAsembly-plan34) to become OUT, and the interrupt described

above would be triggered. The function some-hairy-debugging-routine might try to

reestablish (suitable-plan assembly-plan34) by executing the for-first-answer code

a second time. In this case, the query would succeed and a new protection justifying

(suitable-plan assembly-plan34) would be constructed using the persistence asserting

the conveyor is running in the afternoon.

It would be nice in this sort of situation if we could define a special sort of protection
that would would try to reestablish itself if it ever became OUT. By reestablish I mean that

the protection ddnode would have a signal function that would fire whenever the ddnode

toggled from IN to OUT. This signal function would try to find another token satisfying

the protection criteria, and if successful, it would create a new justification and install it in

the protection ddnode. This is, in fact, exactly what a type II protection is. The associated

signal function has a priority level which ensures that the user will not be bothered by false

alarms".

Type I1 protection will work in some situations, but will fail in others. Suppose that a
type II protection fails, and its associated ddnode becomes OUT. At this point the signal

function would try to reestablish the protection. Let's suppose, however, that there is no
token that satisfies the protection criteria. The protection stays OUT. Now, suppose that

you remove a constraint that would allow a token to persist long enough to satisfy the

" User change-driven interrupts have a priority level that guarantees that all TMM signal functions aft
run first. Changes that occur during TRMS update and are subsequently nullified by other TMM signal
functions are never noticed by the user.

'- -'- .- ............................................................-... "....-,.--,-- ..-......-.-",.,, ...,........'..',-',.,,,,,...,,, ,,,,, ,-'
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protection criteria. Since there's no way to notice or anticipate this change, the protection

won't be updated, and it will remain OUT despite the fact that there is a token which

would satisfy it. One possible remedy for this would be to set up justifications for every

time token that matches the fact type to be protected. This is called a type III protection.

The overhead for a type III protection is potentially exorbitant. In most cases a simple

protection is adequate and the greater generality of type II and III protections not worth

the additional expense.

The time map uses simple protections by default. It is quite easy to change the default

to type II or type Ill protections if desired.

Notice that all three protection types depend upon the ability to keep track of the

validity of temporal conditions such as (pt< ptl pt2) and (pt=< ptl pt2). In the next

section we'll see how to implement the "virtual transitive closure' of temporal conditions

involving pairs of points.

4.3.3 Keeping track of temporal conditions

The objective of this subsection is to describe a method for maintaining the following invari-

ant: each ddnode corresponding to a temporal condition (e.g., (pt< ptl pt2)) is IN just in

case the constraints in the time map warrant it. I'll begin by being more precise concerning
what I mean by "the constraints in the time map warranting a temporal condition'. Let's

assume that all of the conditions that we're interested in can be defined in terms of the

predicate eit described in Chapter 3.

The temporal condition (pt( ptl pt2) is warranted in a given time map just in case

there exists a path from ptl to pt2 (through the time map) consisting of points and directed

edges such that the sum of the lower bounds associated with the directed edges is greater

than 0. If we just wanted to find out if (pt( ptl pt2) was true in a given time map this

would be simple. But for the TMM to work properly we want to be able to guarantee that

the status (IN or OUT) of the ddnode corresponding to (pt< ptl pt2) always accurately

reflects the status of the constraints in the time map. Almost any change to the depen-

dency network that affects a constraint can have a bearing on whether or not a ddnode

corresponding to a temporal conditions should be IN or OUT.

We would like the following to occur. whenever the ddnode corresponding to a constraint

becomes IN, if that constraint can participate in a path that satisfies a temporal condition,

• .... - ,, ...-.;..... .. ..-.... , .-.-.. ,. : - - .. . ... . . . ... .. . . ... . .
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C2 pt3
pt 1

pt2
ddnode: justifications:
n1 - C1 = (elt (distance ptl pt2) 1 3) premise
n2 -- > C2 = (elt (distance ptl pt3) 4 5) premise
n3 -- > (pt( pt2 pt3) (((n., n2}{)))

Figure 4.4: Updating a temporal condition

then that fact is noticed and the system sets up a justification for the ddnode corresponding

to that temporal condition. The justification is constructed from the ddnodes for the

constraints used in the path. A simple example should make this clearer. Figure 4.4

illustrates a time map with three points, two constraints, and one temporal condition (pt<

pt2 pt3). The path from pt2 to pt3 using constraints Cl and C2 has a lower bound of I

and an upper bound of 4. Since the lower bound is greater than zero, this means that (pt<

pt2 pt3) is satisfied. The justification (jul ,z2)H)) is added to n3, the RMS updates
the data dependency network, and n3 becomes IN. If either of the two constraints ever

becomes OUT, then the ddnode corresponding to (pt< pt2 pt3) will become OUT as well
(assuming that it doesn't have another valid justification).

Whenever a new constraint is added (or, in general, whenever a new constraint becomes

IN) the possible repercussions of that constraint have to be propagated throughout the

network. -The propagation must occur so that, among other things, new derivations for

temporal conditions are noticed and appropriate justifications installed in the corresponding
ddnodes. In the time map, propagation occurs as heuristic search. Noticing that a path

satisfies a temporal condition is handled using objects of data type TCONDIT (introduced in

the previous subsection) that are installed on objects of data type POINT in the time map.

Each TCONDIT consists of a ddnode and a pair of functions. The propositional content of

the ddnode corresponds to a temporal condition defined in terms of elt (e.g., (pt< ptl
pt2)). The first function, called the eutfun, is used to determine if the temporal condition

is satisfied by a path through the constraint network. Such a path determines an upper

and lower bound on the distance separating the two points referred to in the temporal

condition. Recall that the time map is just a graph with POINTs for vertices and CONLINKs

. *j*~**
S -. .aL,,. . .. ,,*. -, .. L.. *,,hi, . mo, dmm[ n,.u l i n,,bi, .. . .... .
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C3
Constraints:

Cl = (elt (distance pt3 pt5) 4 5)
C2 = (elt (distance pt5 ptl) 1 2)
C3 = (elt (distance ptl pt2) 1 1)
C4 = (elt (distance pt2 pt4) 1 2)
CS = (elt (distance pt4 pt6) 3 4)

Points: TNPATHs: Temporal conditions:
ptl {<ptl ptl 0 0>) 
pt2 {(<pt2 pt2 {) 0 0>) 0
pt3 {<ptl pt3 {C1 C2) -7 -5>) {(pt< pt3 pt4)}
pt4 {<pt2 pt4 {C4} 1 2>) {(pt< pt3 pt4)}
pt5 {(<ptl pt5 {C2) -2 -1>} {)
pt6 {} ()

Figure 4.5: Updating temporal conditions during constraint propagation

for directed edges. A path is just a set of CONLINKs, and the lower (upper) bound on the
distance estimate of the path is just the sum of the lower (upper) bounds of the CONLINKs.

The satfun for a TCONDIT corresponding to the relation (pt< ptl pt2) would return true
if applied to a path from ptl to pt2 with lower bound greater than 0 and falae otherwise.

The other function for a TCONDIT, the assimfun, is executed just in case the satfun returns

true. The assimfun serves to install new justifications in the TCONDIT's ddnode. The new

justification consists of all of the ddnodes associated with the constraints in the path (e.g.,

in Figure 4.4 the path consists of the constraints C1 and C2 with corresponding ddnodes at

and n2. The assimfun would install the justification ({hl, n2)()) in n3).

In the course of propagating constraints, the ddnodes corresponding to temporal condi-

tions are brought up to date. The actual algorithm used in the time map is rather hairy.

It incorporates a number of optimizations and special techniques in order to deal efficiently

with contexts [McDermott 831 and branching time [Dean 85). The basic idea, however,

is pretty straightforward. Given a constraint, you want to find each path traversing the

constraint that satisfies the satfun for some TCONDIT and then use the assimfun for that
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TCONDIT to install a suitable justification to bring the corresponding temporal condition

up to date. Each time a constraint becomes IN, the system has to propagate that con-

straint. The algorithm proceeds by extending paths out from either end of the constraint in

breadth-first order. The algorithm keeps temporary notes (objects of data type ThPATH) on

each point visited. These notes are used to store information about the best paths found so

far. Every time you extend a path, you see if you've already been there, and if so, update

the note stored there. If you've never been there before, or you've found a better path, then

you want to check to see if the new or improved path can be used to update any TCONDITs.

An example should make this clear.

Figure 4.5 shows a simple time map involving six points and five constraints. In this

figure, objects of data type TPATE are notated <starting.point final-point list-of.constraints-

in-path lower-bound upper-bound>. Suppose that the ddnode corresponding to the constraint

C3 between ptl and pt2 has just become IN. Suppose further that the update algorithm has

already extended paths to pt5 and pt4, and it has just found a new path from ptl to pt3.

In checking to see if there are any TCONDITs relating pt3 to some other point, it finds the

TCONDIT (pt< pt3 pt4) relating pt3 to pt4. To see if it can satisfy the temporal condition,

it examines pt4 for a path from pt2. In this case, it finds the required path. Using the

path from pt2 to pt4, the path from ptl to pt3, and the constraint C1, it constructs a

new path from pt3 to pt4. The lower bound of this new path is 7, which satisfies the

TCONDIT's satfun. To complete the operation, the assimfun is used to construct a new

justification for the ddnode corresponding to (pt( pt3 pt4) from the ddnodes associated

with the constraints (Cl, C2, and 0) in the composite path.

Each THPATH has a score computed using the weighting information on the CONLINKs

traversed in the path. The scoring function in the current implementation causes the search

to be conducted in an essentially breadth-first manner, though it does tend to favor certain

paths slightly. (I'll talk a little more about scoring functions when we get to the section on

caching (Section 4.4.3).)

The above description of the propagation algorithm should be sufficient for most readers.

The algorithm employs standard graph searching techniques with some additions to handle

updating TCONDITs. For those wishing a slightly more detailed exposition, I will now present

the algorithm a bit more carefully.

An object of data type CONLINK consists of a begin and end POINT, and an upper and

lower bound on the distance separating the two points. In addition, each CONLINK has a

- . - ..
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pointer to the ddnode associated with its corresponding constraint. A CONLINK is traversible

if and only if this ddnode is IN. An object of data type TMPATH records an estimate of
the distance from one POINT in the time map, its beginning, to a second POINT, its end.

A TMPATH is stored on a list referenced from the POINT corresponding to the end of the

TMPATH. The distance estimate for a given TMPATR is actually computed from two (possibly

different) paths though the time map: one for a lower bound and one for an upper bound.

An upper (lower) bound of a path is equal to the sum of the upper (lower) bounds of the
individual CONLINKs traversed in the path. In the time map, the justification for believing a

distance estimate is as important as the estimate itself. The path-eupport set for the upper

or lower bound of a path consists of all the ddnodes associated with CONLINKs traversed in

the corresponding path. The justification constructed for a distance estimate has a set of

in-justifiers equal to the union of the path-support sets for the bounds used in the distance

estimate. Such a justification has no out-justifiers. A TMPATH has slots for the upper and

lower bounds of its associated distance estimate and slots for the corresponding upper and

lower path-support sets.

Now I want to define the function propagate-constraint. This function takes six

arguments. The first five correspond to the ddnode (dn), the begin and end POINT (ptl and

pt2), and the upper and lower bounds (low and high) of the constraint to be propagated.

The sixth argument is an indication of the amount of time to be spent in propagating this

constraint. It can be either a fixed amount of CPU time or a depth cutoff (in the description
below I refer to an allotment of CPU time). The algorithm keeps a queue of TXPAT~s to

extend. This queue is generally sorted according to some criterion of goodness (e.g., path

length or the sum of the weights on the CONLINKs in the path). In this case, the "most
promising" THPATE is always the first on the queue. The function propagate-constraint

is defined as follows:

propagate-constraint(dn ptl pt2 low high alloc-cpu)
1. Shadow all constraints linking ptl to pt2 by setting the labels of

their corresponding ddnodes to OUT - set aside each old label and
ddnode so they can be restored later (the reason for this is that
we're only looking for paths that include the constraint being
propagated).

2. Set the queue to 0.
3. Create a TMPATH with beginning POINT ptl and end POINT pt2. Set

the lower bound to low, the upper bound to high. and the lower and
upper path-support to {dn} - put the new TMPATH on the queue.

4. Create a TMPATH with beginning and end POINT ptl. Set the lower



CHAPTER 4. IMPLEMENTATION 157

and upper bounds to 0 and set the lower and upper path-support to
{} - put the new TJPATE on the queue.

5. Choose the *most promising" TMPATB on the queue in order to extend
the search - call this chosen path the initial-segment.

6. For each CONLINK cl starting at the end POINT of the initial-sepent:
a. Call the end POINT of cl tc-begin.
b. Create a new TKPATH called the extended-path with the same

beginning POINT as the initial-segment and end POINT tc-begin
i. set the lover (upper) bound equal to the sun of the lower

(upper) bounds of cl and the initial-segment.
ii. set the lower (upper) path-support equal to the lover (upper)

path-support of initial-segment augmented with the ddnode
associated with cl

b. If there is no existing TMPATH at tc-begin that has
the same beginning POINT as the extended-path,

then place the extended-path on the list of TMPATRs of
tc-begin and put the extended-path on the queue

else if either the lower or upper bounds of the extended-path
are better than those of the the existing path.

then update the existing path (and its corresponding
path-support) and place the existing path on the queue.

c. If either there was no existing TMPATH at tc-begin with
the same beginning POINT as the extended path

or the extended-path was better than the existing path
in either its lower or upper bounds

then for each TCONDIT tc at tc-begin:
i. find the POINT corresponding to the other end of

the TCONDIT and call it tc-end
ii. if there is a TMPATB at tc-end that begins at the

POINT opposite the one extended-path begins at
(THPATHs can only begin at one of ptl or pt2).

then I. form a new path called the resultant-path
by combining this opposing path with the
extended-path and the constraint being
propagated.

II. if the satfun of tc applied to the
resultant-path returns T

then execute the assimfun of tc
with the sane resultant-path

7. If there's still CPU time left and the queue is not empty
then go to step 4
else a. restore the old labels to the DDNODEs shadowed in (1)

b. clean up the visited POINTs by removing all TNPATHs

There are a number of complications involved in the propagation of constraints that

are worth mentioning briefly. When a new justification is installed, the RMS is called

and the status of a temporal condition may change. This, in turn, can result in other

...............................................
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constraints becoming IN (e.g., clipping constraints) that need to be propagated. The signal

functions associated with constraints and the priority queue mechanism ensure that if a

constraint becomes IN, it will eventually be propagated. Other complications arise from

attempting various optimizations. The TMM does not install every possible justification

for temporal conditions. The main reason is to save work. In order to ensure completeness,

TCONDIT signal functions are designed to try to find a path satisfying the TCDNDIT satfun
if the TCONDIT ddnode ever becomes OUT. In practice, this technique and other similar

dependency-mediated bookkeeping methods make a noticeable difference in the performance

of the TMM. In Section 4.4.3 we'll look at some additional techniques for caching point-to-
point distances that make use of special TCONDITs.

Using the constraint propagation scheme outlined above, and allowing the algorithm to

run until no path extensions achieve better bounds, guarantee maintenance of the invariant

0 described at the beginning of this subsection. Of course this sort of exhaustive search is
prohibitively expensive. The complexity of the algorithm depends upon the number of

constraints. Assuming a reasonable number of constraints, say n2 where n ii the total

number of points, the algorithm will take time proportional to the cube of n. If ft is large,
as is expected in many applications, and constraints are frequently changed, then this sort

Of overhead cannot be absorbed. In most cases, however, you can get by with much less

than exhaustive search. The easiest approach is to put an absolute limit on the search in

terms of either CPU seconds or length of longest path considered. In most applications,

the length of search paths required to catch al critical temporal conditions is bounded
by a small integer. For a given application this bound can be determined with a little

experimentation. It might also be convenient in some instances to vary the bound to suit
the type of problem being worked on or the time required for a solution. Adding a constraint

(or having a constraint become IN) can be handled in constant time where the constant

depends upon the sort of temporal connectivity expected for the application at hand.

4.3.4 The TRMS update algorithm

* We can now describe the overall algorithm for performing temporal reason maintenance in

terms of a set of invariants to be maintained. The invariants are:

1. all TCONDITs are as IN as the current set of constraints warrant

2. all apparent contradictions are resolved

.7 .7:.
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Priority: Data dependency nodes and associated signal functions:

100 ddnodes associated with constraints (CONLINKs) - the signal
function instigates constraint propagation whenever the ddnode
becomes IN.

200 ddnodes associated with temporal conditions (TCONDITs) - the
signal function tries to find a new path connecting the two
points whenever the ddnode becomes OUT.

300 ddnodes associated with TCONDITs responsible for detecting
apparent contradictions - the signal function propagates a
constraint which serves to clip the persistence of the earlier
occurring time token whenever the ddnode becomes IN.

400 ddnodes assocated with type II protections - the signal
function tries to find an alternative time token satisfying the
protection criteria whenever the ddnode becomes OUT.

500-900 ddnodes associated with if-erased demons and other sorts of
change-driven interrupts - priority levels for user invariants

Figure 4.6: TRMS invariants and signal functions responsible for maintaining them

3. all protections (type I in particular) are as IN as possible

The algorithm for maintaining these invariants is implemented using the signal functions
and priority levels (where the lower the number the higher the priority) shown in Figure
4.6.

Once you understand how signal functions and priority queues work in the static RMS
(see Section 3.2.5), the TRMS algorithm can be completely specified in terms of the de-
pendency structures built by the TMM and signal functions attached to various ddnodes.
Previous sections have sought to describe these signal functions and dependency structures,
but I doubt very much that most readers will have a clear understanding of the algorithm, or
feel assured that it performs as advertised. The actual flow of control in such an algorithm is
extremely difficult to follow. The important changes to the time map (those requiring signif-

icant reorganization and relabeling of ddnodes) result from adding or removing constraints

K-.
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and erasing time-tokens. When constraint ddnodes become IN, their signal functions prop-

agate their corresponding point-to-point distance estimates. This propagation can result in

the update of TCONDIT ddnodes which participate in the justifications for protections and

clipping constraints. The former can directly affect the status of ddnodes corresponding to

time tokens. Either update can result in a change in the status of ddnodes corresponding

to constraints used to resolve apparent contradictions. If one of these ddnodes becomes

IN, then propagation occurs and the cycle repeats. In the next (sub)section I'll show that

(under certain assumptions) this cycle of activity is guaranteed to terminate in a state that

satisfies one interpretation of correctness for time maps.

4.3.5 Correctness of the temporal reason maintenance algorithm

The top level invariant maintained by the temporal reason maintenance system can be

expressed as follows:

Each token, TI, can be shown to clip each contradictory token, T2, just
in case TI and T2 are IN and there exists a path through the time map

consisting of CONLINKs with IN ddnodes such that the beginning of T2 can

be shown to precede the beginning of TI.

Of course, tokens are typically justified by protections that are IN or OUT, depending

upon the status of other tokens and the extent to which these (protecting) tokens are
clipped. This gives rise to a circularity that could potentially cause problems. Figure 4.7

" shows how changes instigated by the user are translated into cals to the static RMS and

execution of signal functions which, in turn, give rise to further calls to the static RMS. The

circularity is plainly depicted in the Figure 4.7. The user modifies the time map by adding

new tokens and constraints in the course of controlled forward chaining. It is the addition

of constraints which is of real interest. Modification to the status of a CONLINK ddnode

can cause constraint propagation which, in turn, causes modification to the status of other

CONLINK ddnodes. If one is not careful, this can go on indefinitely. Ensuring that it does
not, will require the cooperation of the user. In order to construct a proof of correctness,

we will have to establish some conventions for using the TMM.

$Adding a time token is not nearly as important as constraining a time token. An unconstrained time
token has no appreciable effect on the time map.

• . -~~~~~~~~~~~~~~~~......................'.'" , . .. .. . . ............... ..-................ '.-....-......-"".--.-..-"..
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external modifications to the constraint set

I VI

Ichanges in the status of CONLINK ddnodes IIIchanges inIIII
I II II I the status II

I IIN =), contraint propagation A\ I of clippingi 11 1
I VSI constraint II
Ichanges in the status of TCONDIT ddnodes 11 I ..ddnodes....I A I

IIIOUT => attempt to reestablish temporal conditions .1

I VII

I changes in the status of protection ddnodes I
I II I
I I OUT a> attempt to reestablish type 11 protections I
I V I
Ichanges in the status of TOKEN ddnodes I

Figure 4.7: Flow of control in temporal reason maintenance
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I'll begin by describing a general criterion that should serve as the basis for constructing

working sets of conventions that guarantee correctness. The situation that we're trying to

avoid occurs when the action of clipping a persistence results in a chain of further actions

that are ultimately responsible for undoing that clipping. The criterion is captured a bit

more concretely in the following two rules:

1. clipping which results from resolving an apparent contradiction between two tokens

cannot be the cause of a situation in which one of the two tokens becomes OUT.

2. clipping which results from resolving an apparent contradiction between two tokens

cannot be the cause of a situation in which one of the CONLINK ddnodes involved in

establishing the apparent contradiction criterion (i.e., one of the CONLINKs in the path

satisfying the ICONDIT used to determine that one token precedes a second) becomes

OUT.

The'above rules do not provide a satisfactory foundation upon which to build a proof

of correctness. Neither do they provide a great deal of guidance in building systems that

employ the TMM and depend upon it performing correctly. In the following, I will present

* . 5 specific conventions for managing temporal data bases that satisfy the rules above and

* provide a general framework that is provably correct. These rules may at first appear

* . rather restrictive, but I hope to show that they impose reasonable restrictions and do not

undermine the basic functionality described in the previous chapters. These conventions,

once their intent is understood, can be considerably relaxed if one is careful. In addition

they make the proof of correctness a good deal less complicated. The TMM was used

for over a year before anyone tried to carefully prove anything about its behavior. In that

time, the conventions to be described were frequently abused with no noticeable detrimental

effects. Where possible, I will try to motivate each convention with examples showing why

violating the convention can get you into trouble, and why the convention will, in many

cases, keep the user from getting into situations which on the face of it may appear natural

but on closer inspection point out some underlying conceptual misunderstanding.
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(for-first-answer
(fetch '(and (time-token E ?tokl)

(tt (begin ?tok) (end ?tok) P)
(tt (begin ?tok) (end ?tok) Q)))

(add '(and (time-token R ?tok2)
(elt (distance (end ?tokl) (begin ?tok2))

*poas-tiny* *pos-tiny*))))

Query for establishing dependency

Frame of reference: (begin token3) Scale: 1.0

tokenl P
II ------------------------------ -------------------------

token2 Q
II-----------------------'

token3 E------

token4 R
-------------------------------------- )

Resulting time map

Figure 4.8: Restricted controlled forward chaining

Rule 1

Temporal data dependencies constructed in controlled forward chaining must

conform to the following: All persistence tokens which depend upon protec-

tions are constrained to follow (by at least some infinitesimal amount) the

intervals associated with their justifying protections.

Figure 4.8 illustrates how temporal data dependencies are generated which conform to

Rule 1.

What we really want to say here is that a time token with schema P cannot depend upon

(even indirectly) a time token with schema ft where P and t contradict one another and the

token with schema t is protected longer than the beginning of the token with schema P.

Simply put, a persistence cannot undermine its own reason for being. Figure 4.9 illustrates

.................
.*No"
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(for-f irst-answer
(fetch '(tt ptl pt2 P))
(add '(and (time-token (not P) ?tok2)

(elt (distance ptl (begin ?tok2)) 0 *pos-inf*)
(elt (distance (end ?tok2) pt2) 0 *po.-inf*))))

Frame of reference: ptl Scale: 1.0

tokenl P
[ ---------- ????????????????????????????????????????l????

ptl pt2
I ----------

token2 (not P)

Figure 4.9: Situation in which the TRMS will not terminate

a blatant disregard of this rule.

The loop in this case is quite simple. Initially P is true throughout the interval from ptl
to pt2 so token2 is IN. But if token2 is IN, then it is in apparent contradiction with tokenl,

so the ddnode associated with the clipping constraint becomes IN and is propagated. But

this should result in noticing that the eiad of tokeal precedes pt2, which says that P is
no longer protected throughout the interval from ptl to pt2, and so toker2 is OUT. But
if token2 is OUT, then so is the clipping constraint ddnode so the protection is back,

IN therefore token2 is IN, and so on until something external terminates the program.

The problem in such cases is that the data Yase is essentially contradictory. The cycle of
deduction that leads to a contradiction is seldom so apparent as that shown in Figure 4.9.

In general it requires a good bit of care on the part of the designer to see to it that such

contradictions are not possible. The rule stated above ensures that no contradictions occur,

but still allows for the case in which an event can terminate one of its antecedent conditions
(e.g., throwing the main circuit breaker in the basement may depend upon the lights being

on so I can see the breaker box; turning the main breaker off will result, however, in the

light being off and my being in the dark).

It may seem somewhat clumsy to require that a persistence begin after (but not coinci-

dent with) the end of the interval(s) over which its dependent protections must span. This

requirement is necessary due to the fact that persistence clipping constraints force the ear-
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ier token to end before (but not coincident with) the later token. Since protections demand

that the associated token not end before the end of the protected interval it is necessary

that persistences begin after the end of the protected interval. Essentially, this means that

all tokens are closed intervals. Because of the way persistence clipping and protections are

handled, the following code fragment will not terminate:

(for-first-answer
(fetch '(tt ptl pt2 (on light34)))
(add '(and (time-token (off light34) ?tok)

(elt (distance ptl (begin ?tok)) 0 0))))

However, if we're willing to look at persistence boundaries in a slightly different manner,

we can set things up so the above code fragment will terminate. All we have to do is change

the persistence clipping constraint so its lower bound is 0 instead of *pos-tiuy*. This

allows that two contradictory tokens can share boundary points. If you adopt a consistent

interpretation in which persistences are considered closed on the left and open on the right,
then this will not cause problems. It is important, however, to be clear about what is

happening at boundary points. Rule 1 implies a consistent strategy, but other less restrictive

ones are possible.

Rule 2

Having initiated the TRMS update algorithm by changing the justification
for a constraint or time token, the only additional constraints to change

status are those added by the system in resolving apparent contradictions.

This rule is a bit harder to swallow than the previous one, simply because it forces a

(partial) separation between temporal connectivity and inferential connectivity. From an

aesthetic point of view, it would be nice if we could somehow integrate the two. Ideally, all
constraints should be dependent upon the tokens whose points they constrain. If a token

became OUT for one reason or another, then its associated constraints would evaporate as

well, leaving the data base free of "phantom' constraints (i.e., constraints relating points

belonging to tokens which are OUT). Figure 4.10 illustrates such a situation. Suppose that

I had been planning for some time to tie one on with a few friends, but, things being as they
are, we'd never pinned the date down too carefully. Then we hear of the fuse being lit (this

is all weakly metaphorical) and we mutually decide to have our binge before the bomb. Now

assuming that we have some idea when the bomb will explode (for instance we know that

it has a fuse just as long as the patience of the most belligerent SAC commander), it makes

, • " " z -. **- o., . -..- ... ... .................... ..
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Frame of reference: (begin light4l) Scale: 1.0

lighet4l (light (fuse-of bomb32))
1--I

burning6 (burning (fuse-of bomb32))
I----------------I

explosionl4 (explode bomb32) io-ol
binge67 (ingest !<(fluid-type alcohol) (quantity excessive)> self)

Figure 4.10: Tying one on while there's still time

sense to say that we'll schedule our binge before the explosion. It also makes sense that if

the threat of explosion disappears, then we should no longer feel constrained to hasten our

dissipation. That is to say, the constraints that refer to a token which is OUT should be

OUT as well.

Unfortunately, there are other times when it seems quite natural to constrain tokens

representing real events relative to those which are not believed to occur. Figure 4.11 shows

a simple example. In this case, you plan to extinguish the lighted fuse in order to prevent

the explosion. The fuse quenching task is constrained to precede the predicted explosion

event. Obviously in this case, if the constraints evaporate we may not execute the quenching

task in time7. Now, you may say that it was wrong to have constrained the quenching task

to come before the explosion in the first place. Instead it should've been constrained to

follow the fuse lighting event by some small period of time. This will work out fine in the

two examples (and the TRMS algorithm will terminate correctly), but, and the reader will

have to take my word for this, there are other situations where this is not enough. Neither

approach will do precisely the right thing in all cases. It is the user's responsibility to

separate inferential connectivity and temporal connectivity so as to avoid situations leading

to nontermination. In practice this in not at all dificult. 'Phantom' constraints still have

to be dealt with on occasion, but this has never presented much of a problem. In those

situations that require being informed that an event is no longer predicted to occur and

therefore should not constrain other events, it is simple enough to set up dependencies to

monitor this fact and respond to it in an appropriate manner.

'it is also the case that in this situation the temporal data dependency system won't terminate.

. ...........................
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Frame of reference: (begin light4l) Scale: 1.0

lighet4l (light (fuse-of bomb32))1--I
burning6 (burning (fuse-of bomb32))

II----------
explosion14 (explode bomb32) I°-I-

extinguish35 (extinguish (fuse-of bomb32))

quenchedl7 (not (burning (fuse-of bomb32)))
II------------------------------------

Figure 4.11: Circularities

Keeping temporal connectivity separate also makes fault annotation (for dependency

directed debugging in planning) simpler. An example should illustrate how. Suppose that

the robot has a task to transfer an object from one location to another, and that one way

of doing this is to place the object upon a working conveyor. That is to say, the plan

for transferring an object using the conveyor depends upon the conveyor being operational
throughout the period of transfer. Let's also suppose that the robot has the task of per-

forming some routine service work on the conveyor which will require shutting down the

conveyor for an indeterminate period of time. Figure 4.12 shows the relevant portions of

the situations (the transfer task and the routine service task are not constrained relative
to one another and hence are shown from different frames of reference). One subtask of

the transfer task, the subtask involved with placing the object on the conveyor, is shown.

This subtask is constrained to occur during the transfer task. The question we're concerned
with here is what is the justification for those constraints. Suppose for a moment that the

constraints depend upon the protection that it be true throughout the tranfer task interval

that the conveyor be operational. Let's see what problems this raises. Suppose that the

routine service task is constrained to occur after the beginning of the transfer task and be-

fore the beginning of the task to place the object on the conveyor. Figure 4.13 shows such

a situation, but the dependency network in this case is not stable. When the constraints

on the routine service task are added, the system can clip the persistence corresponding
to the conveyor being operational; this in turn will cause a protection violation, which will

"erase" (i.e., cause to become OUT) the constraints that forced the placement task to oc-

2-
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Frame of r-.ference: (begin transferl4) Scale: 0.3

running17 (operational-status conveyor34 in-service)
< II --------------------------------------------
transferl4 (transfer object4l loci loc2)

- -- I
place56 (place object4l conveyorl)

I----------- I ----- I

Frame of reference: (begin routine-service43) Scale: 0.3

routine-service43 (routine-service conveyor34)
I ---------

shutdown44 (shutdown conveyor34)

downs (operational-status conveyor34 out-of-service)
--II-. . .. . . .. . . . .. . . .. . .-

Figure 4.12: Potential problems with termination

cur during the transfer task. But these constraints were used in clipping the persistence,

thereby violating the protection in the first place, and so the protection becomes IN, and

the constraints become IN, and the whole process repeats. In this simple example, it seems

that we should be able to detect the problem and tell the user to retract certain constraints

but in general the repeating cycles could be arbitrarily complex. Determining when you've

been in the same state twice can be quite expensive.

But, of course, detecting the problem and simply stating that the data base cannot be

reconciled with the newly added constraint is not all that informative. If the constraints

in this case could've been depended upon to remain stable, the system could've told the

user that the constraint on the routine service task endangered the success of the transfer

task. This is the sort of information that a planner should be prepared to deal with, and a

temporal management system prepared to supply.

If you are going to allow the calling program to make arbitrary ordering decisions, then

you're going to have to lay down some rules about what sort of dependency networks can

be constructed with impunity. Keeping temporal connectivity and inferential connectivity

separate is in some cases an extreme move. The system doesn't demand it (the user has

full control over the current answer and the alternate answer), but it is recommended in

* *
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Frame of reference: (begin transferl4) Scale: 0.3

runningl7 (operational-status conveyor34 in-service)
< -------- II ------------------ I
transfer14 (transfer object4l locl loc2)

I --------------------I
routine-service43 (routine-service conveyor34)

I1--------
placeS6 (place object4l conveyorl)

shutdown44 (shutdown conveyor34)

dovn8 (operational-status conveyor34 out-of-service)
II -------------------------------- >

Figure 4.13: Unstable time map

many applications including planning. Chapter 5 will describe a regimen that maintains

the separation in a fairly natural way suitable for robot planning and problem solving.

Rule 3

The only constraints that refer to the end of a persistence are those added
by the system in resolving apparent contradictions.

This rule essentially says that the end points of persistences must 'float'; drifting at the
whim of the TMM. Figure 4.14 illustrates an example where violating this rule can cause

problems.

The time map in Figure 4.14 shows that token5 is clipped by token7 and that it endures

at most 5 units. The beginning of token3 is coincident with the end of token2, and token3

clips tokeal. It's not clear in Figure 4.14, but the beginning of token2 is not completely

constrained with respect to the beginning of tokeni, however the points corresponding to

*t the beginning of tokeni, the beginning and end of token6, and the beginning of token7

are all completely constrained with one another. Assume that token5 depends upon to-
keni persisting throughout token4. Now let's suppose we add the following constraint:

(sit (distance (begin token2) (end token5)) 6 6). This constraint will result in Q
I* no longer being protected throughout token4 so that tokens will be OUT, so token7 will

no longer clip the persistence of token6, so Q will again be protected throughout token4,

, .
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Frame of reference: (begin token2) Scale: 1.0

tokeni Q
I I---------------I

token2 El

token3 (not Q)

token4 E2

--- --- 05 -

tolcen6 E3

token? (not P)
------------------------------->

Figure 4.14: Violating the freedom of the end of a persistence

so token$ will be IN, and so on ad infinitum.

I realize that this example requires some effort to understand. I guarantee, however,
that the (insidious) bugs that result from failure to comply with rule 3 are infinitely more

incomprehensible and difficult to analyze.

The lesson to be learned from this is that it's not safe to bank upon the end of a

persistence. In most cases, what is reay needed is either a protection or some sort of

forward inference rule that alerts you to predicted events or effects. I have trouble coming

up with plausible examples where one would want to constrain the end of a persistence.

I'll give an example of where it might make sense, but (I think) other methods are more

appropriate.

Suppose that you want to make sure that you have enough diesel fuel for the genera-

tor backup system for your computing facility so all the machines won't crash during an

extended power failure. In light of this, you have a task to call your supplier not later

than 10 minutes after the first indication of a power failure (i~e., the persistence of the

"power available" token ceases). To make this a bit more plausible, suppose that you're

really cheap and you don't want to buy oil unless it's absolutely necessary, the supplier

will deliver within 20 minutes, and you have 45 minutes of battery backup (so you have 15

minutes leeway). This constraint on your task won't really help you to plan, since you have
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no idea of the conditions in force at the time the plan actually will be carried out (being at

the mercy of the weather and the utility commpanies). So all you really can expect is to

have the token representing the unexpanded task constrained correctly. The constraint on
the task won't even tell you when the task is imminent so you can expand it in time. There
are better ways of alerting oneself of the need to plan for, and carry out, such tasks. One

way would be to set up a forward chaining rule that would trigger whenever an event was

added which caused a power outage. In effect, this had to be done by the TMM anyway

in order to detect when the token corresponding to the power being available is clipped by
some contradictory token. As with the other rules, rule 3 can be broken if you're careful.

It is my contention, however, that this rule causes few hardships and any functionality lost

by its enforcement is easily made up in other ways.

Rule 4

No new objects of data type TOKEN are added during TRMS update.

This just makes the proof simpler. In later sections I'll break this rule to handle certain

forms of temporal forward chaining.

Rule 5

No two time tokens asrting contradictory facts can be shown to have co-
incident beginning points.

This is just another criterion to ensure that the data base not have any outright unre-

solvable contradictions.

The above 5 rules constitute the basic assumptions about how the TMM is employed

necessary to guarantee termination. Before I present the proof of correctness I want to

review some ideas presented in previous sections, point out some of the places where the 6
rules described above will come into play, and introduce some additional terminology that
will be used in the proof.

4.3.6 Some preliminaries to a proof of correctness

In this section I've spoke about two important data dependency relations. The first con-
cerned dependencies set up to clip persistences in keeping with the apparent contradiction

....... .................
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criterion. In that case we had a special constraint called a clipping constraint whose ddnode

was justified by a TCONDIT ddnode and the two ddnodes associated with the two contra-

dictory tokens. The resulting data structures along with their associated ddnodes and

justifications were depicted in Figure 4.3. The second type of dependency relation concerns

protections and was illustrated in Figure 4.3, again with its associated data structures. In

each case, ddnodes corresponding to TCONDITs and TOKENs play the critical roles. Recall

that a TCONDIT has justifications which take the form of some number of CONLINK ddnodes.

These CONLINKs define a path through the time map which would satisfy the TCONDIT's

satfun given that all the ddnodes were IN. When a ddnode associated with a constraint

(pair of CONLINKs) becomes IN, this causes the propagation of the constraint. This, in turn,

may result in certain TCONDITs being updated to reflect the change in temporal connectivity.

When a constraint ddnode beccres OUT no propagation occurs, but TCONDIT ddnodes can

become OUT as a result of justifications that refer to the diminished constraint ddnode$.

Rules 2 and 3 togetL r guarantee that, after the constraint changed by the user (thus

instigating the update) is propagated, the relative ordering of the beginning of the tokens

in the time map will not change over the course of the rest of the update. This is because

the only constraints that change (by rule 3) are clipping constraints, and since they only

constrain the endpoints of persistences (which are otherwise unconstrained by rule 2) these
constraints cannot change the relative order of the beginning of tokens9  So once the

initial propagation occurs, the beginning of all tokens will remain in the same partial order

throughout the rest of the update. When I say that one token is earlier than another, or

refer to the set of all tokens which occur earlier than a given token, I am speaking only

about the relative ordering of their beginning points.

Finally, before we get on with the proof, I want to introduce two properties of tokens.

A token is said to be stable with respect to its status (abbreviated S/STATUS) just in

case each earlier occurring token is both stable with respect to its status and stable with

*When a TCOIDIT becomes OUT it tries to reestablish its lost status by instigating a search. This is

pictured in Figure 4.7. In discussing the correctness of the temporal reason maintenance algorithm I will
ignore this. It is simply an efficiency matter that allows us to avoid adding justifications for all possible

S "satisfying paths in the network. A new path is added as a justification only if "%s composite label is not
subsumed by the composite label of an existing path.

'We're assuming here that all apparent contradictions can be resolved. This is guaranteed if the lower

bound on all persistences is 0. If not and an apparent contradiction cannot be resolved the system will
detect an inconsistency and prompt the user to resolve it.

.
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respect to the clipping that that token is licensed to perform (abbreviated S/CLIP). If a

token is OUT, then it's not licensed to perform any clipping. In general, a token, TI, is

licensed to clip any earlier contradictory, T2, just in case the ddnodes corresponding to Ti

and T2 are IN, and there exists a path through the time map such that the beginning of

T2 can be shown to precede the beginning of Ti, and the ddnodes corresponding to the

CONLINKs in the path establishing this ordering relation are also IN. Of course, this is just

a restatement of the top level invariant which began Section 4.3.5. To prove correctness

we want to show that the algorithm terminates in a state such that every token is both

S/STATUS and S/CLIP. Intuitively (and simplifying somewhat), a ddnode is IN just in

case all of the protections participating in its justification are IN. A protection is IN just

in case the associated token is IN and it spans (persists throughout) the required interval.

Every IN token clips all earlier occuring contradictory tokens.

4.3.7 Correctness

The proof will proceed by induction. The idea is to show that as the update progresses

tokens become S/STATUS and S/CLIP on a regular basis, and, once they achieve this lofty

position, they do not revert to an unstable state. The only thing that sustains the update

is change in the status of tokens and, since there are a finite number of tokens and these

are eventually all S/STATUS, the algorithm must terminate; and, since all the tokens are

both S/STATUS and S/CLIP, it terminates correctly. Let M be the total number of tokens

in the data base and assume that m > 0.

Basis step: When the initial propagation is finished, there is a nonempty set of tokens

each of which have no earlier tokens in the partial order. These tokens are necessarily

S/STATUS since by rule I they have no protections as this would imply that there ae

earlier tokens. In addition, they must be S/CLIP since there are no earlier tokens and

hence there are no earlier contradictory ones. The status of these tokens must have been

given by fiat, and hence this status is correct and will not change during the remainder of

the update.

Induction hypothesis: I assume that n tokens are both S/STATUS and S/CLIP where

0 < n < m and that further these tokens have the correct status and this status will not

change during the remainder of the update.

-
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Induction step: It's easy to see that there must exist some number (> 0) of tokens

that are S/STATUS but not S/CLIP. By the induction hypothesis there are tokens which

are not both S/STATUS and S/CLIP, so necessarily there are such tokens that are not

earlier than any of the others and these must be S/STATUS by definition. Let's consider

one such token, call it Ti. First, I want to show that the status of T1 is correct and that it

won't change. Since all earlier tokens have the correct status and have clipped just those

tokens they are entitled to, the protections of TI must be IN just in case their corresponding

tokens are IN and span the required interval. If they are IN, then whether or not they span

the required interval should be evident in the status of the protections' TCONDITs. The

only tokens that could stop the tokens associated with the protections from persisting long

enough (by rule I) are those that are earlier than T1 and hence have done all the clipping

they're entitled to. Propagation of constraints guarantees that the clipping constraints will

be reflected in TCONDITs which keep track of the status of protections. So Ti has the correct

status and it can't change.

Now we have to show that T1 will clip all the tokens it's supposed to, and, once it has

performed this clipping (and its associated constraint propagation), it won't do any more.

All clipping constraints depend upon a pair of tokens and a TCONDIT which relates the

beginnings of the two tokens. We can assume that the TCONDIT does not change status after

the initial constraint propagation. So, the only thing that can inititiate further constraint

propagation is a change in the status of tokens. Since both Ti and any earlier tokens which

it could clip will not change any further (by the induction hypothesis and the argument

above), we can assume that the status of all clipping constraints that would result in Ti

clipping an earlier token T1 are s able. Moreover, the signal functions associated with these

clipping constraints will seie to it that these constraints are reflected in the TCONDITs for

protections justifying later tokens. This last may result in a change in the status of other

later tokens, and hence cause further changes in clipping the next time the static RMS is

called. However, Ti has done all the clipping it can do, and this will not change, since the

status of Ti will not change. This shows that Ti is S/CLIP thus completing the induction

argument.

In this way, we can see that the process will not stop as long as changes keep occurring in

the status of tokens. However, since eventually all tokens are both S/STATUS and S/CLIP

the process must terminate and terminate correctlyl .

'°The changes in token status do not necemarily occur in the most efficient order. In the worst case, a single

'"~~~~ ~~~~~~~~ .. .. .... . . . •. -. o. -. •.•,•.o,., - ". o."° -.
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4.3.8 Review

We now have a basic framework for performing temporal reason maintenance. The TMM

resolves apparent contradictions and computes the conditions for belief in assertions that

depend upon facts spanning intervals. The system relies upon a hybrid static RMS along

with a mechanism for maintain invariants to accomplish a form of temporal data depen-

dency update. A proof of correctness for the update algorithm (with certain restrictions on

the use of the data base) has been provided. As in the case of the static RMS, the update

is incremental and performs well in practice.

4.4 Abductive temporal queries

Consider the following simple query in the time map of Figure 4.15:

(and (tt (begin produce3l) (end produce3l)
(operational-status ?machine in-service))

(instance-of ?machine lathe))

According to the time map, the token produce31 can begin before or after the beginning

of the token running47. So what should one expect from such a query? In most deductive

retrieval systems, a query returns a set of bindings such that the instantiation of the query
form with those bindings follows in some way from the information in the data base. In the

case of the above query and the time map of Figure 4.15, there is no such substitution.

If, on the other hand, we assume an additional constraint, (elt (distance (begin

running47) (begin produce3l)) 0 *pos-in *), the query will succeed with substitution

((machine lathe17)). What we might want then, is for the query to return with a set

of bindings and a set of additional constraints such that if the additional constraints were

imposed, the instantiation of the query form with those bindings would follow from the

augmented time map. This is the abductive interpretation of the true-throughout predicate

token could change status on the order of a times where a is the total number of tokens. In practice this
would be hard to even purposely arrange, but less extreme situations occur frequently and can cause the
TRMS to do more work than is necessary. One way in which the TRMS algorithm might be improved
would be to sort the signal functions for clipping constraints so that they swept forward in time; never
propagating a clipping constraint until both of the tokens associated with it were stable with respect to
their status. It would take some experimentation to determine whether or not the sorting overhead would
outweigh the coat of unnecessary token status toggling, but it would certainly pay off if anything like the
worst cae began to manifest itself regularly.

.**..
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Frame of reference: *ref* Scale: 1.0

running47 (operational-status lathel7 in-service)
II ---------------------------------------------------- >

produce3l (produce order43 <(type widget) (number 4)))
I----------------------------------- I-------I

Figure 4.15: Simple time map

discussed in Section 3.6. The additional constraint was referred to as an abductive premise.

In a sense, the query is a request to find a hypothetical situation in which the query form

is true relative to a set of bindings. Hypothesizing is limited to restricting the current

partial order. What we want here is for the TMM to help us see possibilities that are not

immediately apparent in the time map. In planning, this essentially consists of suggesting

a set of additional constraints on an existing partially specified schedule that will help the

planner in carrying out a particular plan to achieve some task.

Handling conjunctions of tt formulae is a bit more complicated. Consider the following

query in the time map of Figure 4.16:

(and (tt (begin produce3l) (end produce31)
(operational-status ?machinel in-service))

(instance-of ?achinel conveyor)
(tt (begin produce31) (end produce31) (attachment ?machine2 ?type))
(instance-of ?machine2 lathe)
(member ?type <widget-bit gizmo-bit>))

In this case, there is only the answer with bindings ((machinel conveyor7) (aachine2

lathe17) (type gizmo-bit)) and additional constraints (elt (distance (begin run-

ning47) (begin produce3l)) 0 *pos-id*) and (elt (distance (begin gizmol2) (be-

gin produce3l)) 0 *pos-in ). The other possibility, involving the tokens runing47

and widget14, won't work, because the intersecting interval im't long enough. The query

mechanism recognizes this by imposing temporary constraints during the query.

The algorithm is shown in Figure 4.17. The temporary constraints added in step 4 are

abductive premises (see Section 3.6). These constraints are actually added to the time map

on a permanent basis if an assertion occurs in the context of an ANS referring to them. The

temporary constraints added in step 6 of Figure 4.17 are simply a means of checking to see
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Frame of reference: *ref* Scale: 1.0

running47 (operational-status conveyor7 in-service)II------------....-
widgetl4 (attachment lathe17 widget-bit)

I I ------------------------------------
gizmol2 (attachment lathel7 gizmo-bit)

II -----------I
produce3l (produce order43 <(type widget) (number 4))

I----- --------------------------- I-------I

Figure 4.16: A slightly more complicated time map

Given a query of the form (tt ptl pt2 P)
1. If you're backtracking in a conjunctive fetch, remove any
temporary constraints added previously in steps 4 and 6.

2. Try to find a token with schema unifying with P that hasn't
been tried yet. If none exist. fail.

3. If the token can't begin before ptl. return to 2.
4. If it can begin before ptl but currently doesn't, add a

temporary constraint to ensure that it will.
5. If the token ends before pt2. remove any constraints

imposed in 3 and return to 2.
6. Add a temporary constraint to ensure that it ends after pt2.

Figure 4.17: Algorithm for handling tt queries

I..
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that conjunctions of tt formulae are satisfied properly. These constraints never become a

permanent part of the time map.

The tricky part of the algorithm in Figure 4.17 is finding the tokens in step 1 and
determining whether one point precedes another in steps 3 and 5. The TMM has two ways
of indexing tokens. The first way we've already mentioned. Tokens can be referenced from

their begin and end points in the network of constraints that is the time map. But it would

be difficult to find a token matching a given pattern by searching through the time map

checking all points, Instead, tokens ane also stored in a discrimination network to facilitate
finding all tokens matching a given pattern. In this respect, tokens are no different from
other assertions in the data base. But, of course, it's not sufficient to find a token matching

a given syntactic pattern; you generally want to know the interval over which its associated

proposition is believed true. To determine this will require some amount of search.

In a temporal query of the form (tt ptl pt2 P), the time map finds potentially ap-
plicable tokens in the following way. First, it marks all tokens unifying with P with a tag
unique to that search'". Next it initiates a search similar to that described in the section on
constraint propagation (Section 4.3.3). Paths are extended from both ptl and the begin-
ning points of all tokens just marked. The search is best-first with 'bet' being determined
by the sum of the weights on the CONLIMs traversed in each path (the lower the sum the
better the path). Objects of type TNPATI (described in the section on constraint propa-
gation) ane left on points to record the partial status of the search. When a path from a
marked token collides with a path starting from ptI, the composite path is set aside as a

measure of the offset of the beginning of the associated token from pti. Usually the search

is allocated a fixed amount of CPU time. If successful, the search returns with one or more

paths indicating the best estimate found of the distance separating pti from the beginning
of a token with schema matching P. The search can be extended by simply providing an.
other allotment of CPU time. To clean up the makers and TNPATh, the search has to be
explicitly terminated. By allowing several searches to be in progress at the same time, the
query routines can be more demand-driven (you try to do no morm work than is absolutely
necessary). This is especially useful if only one answer to a complex conjunctive query is
needed. It you always needed all answers, then each individual search might as well be
exhaustively carried out and the tokens and offset from ptl doled out as needed.

Searches to determine the best known estimate on the distance separating two points

"Several searches can be in progress at the some time, so a token may have more than one mark.
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are performed frequently in the time map, and it is worth the effort to (a) avoid them

whenever possible and (b) optimize their operation if they are absolutely necessary. The

performance of the actual search routines depend upon the same sort of factors that influence

the performance of the constraint-propagation routines (e.g., the number of points and

constraints in the time map and degree of redundancy of the information encoded in the

constraints). If all CONLINKs were given exactly the same weight, the search would be

conducted in breadth-first manner. In applications involving sets of intricately interrelated

events that can't easily be partitioned (e.g., into distinct episodes), breadth-first search

is probably the best strategy. The time of creation information on the CONLINKs could

also assist in directing search in large time maps, but hasn't been shown to pay off in the

applications tried so far. One technique for speeding up searches that has met with success

involves the caching of derived estimates of the distance between selected pairs of points.

These pairs of points are selected on the basis of some strategy for organizing the data base.

I'll describe the details of caching in Section 4.4.3, along with an organizational strategy
based on the task/subtask hierarchy used in planning. In the meantime, I want to show

how the order of the conjuncts in a temporal query can influence the speed of retrieval by

consolidating searches (and thereby avoiding unnecessary search).

4.4.1 Preprocessing queries to optimise fetches

Consider the following rather complex query:

(and (inst ?fachl lathe)
(capacity turning-radius ?machl 12)
(tt ?begin ?end (operational-status ?iachl in-service))
(inst ?mach2 cylindrical-grinder)
(capacity turning-radius ?sach2 10)
(tt ?begin ?end (operational-status ?each2 in-service)))

It basically says to find an interval such that it's true thoughout the interval that there's

an operational lathe of at least 12 inch turning radius and an operational cylindrical grinder

of at least 10 inch turning radius. Now consider how the query will actually be processed.

The first two conjuncts (inst ?aachl lathe) and (capacity turning-radius ?Uachl

12) will serve to bind ahl to a particular lathe. Next, the form (tt begia ?eund

(operational-status ?aachl in-service)) will instigate a search for all tokens that

match (operational-status ?aachl in-service) given the bindings imposed by the pre-

vious two conjuncts and satisfying whatever constraints are imposed on points bound to

. .. .- - , .....%-.. ". .-.... . .. .- ,. . .. ... ... "..' . . -. -. ... ...-.-. •. . . .. • . . . -. .
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the variables ?begin and ?end. It may find none for the lathe chosen, or it may find one for

which there is no token satisfying the last three conjuncts as well. In either case, the deduc-

tive machinery will have to backtrack, find another substitution for ?machl that satisfies

the first two conjuncts, and initiate another search for tokens which satisfy the resulting

bindings. A good deal of work will be repeated in each search. The cost of setting up

the search in the first place, plus the cost of the extending the search from whatever point

?begin is bound to, may have to be duplicated many times.

The TMM can avoid this repeated work by preprocessing conjunctive queries to extract
constraints on conjuncts that require searching through the time map for tokens. The idea

is that the constraints (conjuncts that constrain the binding of variables in conjuncts like

(tt ?begin Tend P)) can be used to assist in marking tokens prior to initiating the search.

The constraints provide an initial filter to limit search.

Sometimes the constraints will have to be used to generate additional bindings as well.

So in the following query:

(and (instance-of ?mach parts-feeder)
(attachment ?nach ?bin)
(instance-of ?bin bar-stock-storage-bin)
(tt ?begin eUnd (operational-status ?Tach in-service))
(tt ?begin ?end (empty Tin)))

the request is for an interval with an operational parts feeder with an empty bar stock

storage bin. Some feeders may not have bar stock storage bins, so the second and third

conjuncts provide a useful constraint to direct search. But, also, for a given parts feeder

there may be several such storage bins, and hence the third conjunct also has to be applied

as a generator for the fourth conjunct and a constraint on the fifth.

The TMM requires a bit of assistance on the part of the user to perform this sort of pre-

processing efficiently. First, to avoid the overhead of preprocessing in handling conjunctions

where it would have no advantage, the system requires that the user request preprocessing

by replacing and with A. The connective & behaves just like and, except that it preprocesses

the conjunction to speed up time map searches. Secondly, it is assumed that a formula

that constrains a variable in a temporal conjunct (e.g., one involving tt or t) will precede

the conjunct it constrains. With this assistance, the system can speed up performance

considerably for commonly occurring query types.

It should be noted that the simple techniques described here are designed to take ad-

vantage of properties of the algorithms used in a particular implementation of the TMM.

.. ..... . .. . ... .... ... .......... .... .... ,,...... ..... .-. ,.....,,., ,..,..... .,. . ,. ., .. ..,- , - ,
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I expect that these techniques could be easily combined with the techniques for ordering

conjunctive queries described in [Davis 85] to increase performance even more. As a simple
example, it is relatively cheap to determine the number of tokens of a certain type present
in the time map. In most cases, temporal conjuncts for which there are few tokens of the

appropriate type should be tried first. The preprocessing necessary to make such decisions,
is negligible in comparison with the time required for searching through the constraint

network in order to determine the "when" of time tokens.

4.4.2 Setting up protections

Recall that in the section on deductive retrieval systems (Section 3.2), the use of deductive
contexts were discussed along with an implementation in terms of objects of data type ANS.
An ANS refers to a set of bindings and a set of ddnode/support type pairs useful for estab-

lishing the justification for assertions. Now I'd like to describe how temporal queries work
in conjunction with assertions. There are two issues. First, how are the abductive premises
generated during a query handled? and, second, what additional dependencies have to be
added to the current answer in order to monitor the continued validity of assumptions made

during the query?

In the following code fragment:

(for-first-ansver (fetch '(tt ptl pt2 P))

(add aome.predictionm))

the current answer ans* is augmented in two ways during the fetch. First, the system

adds to the answer a schema describing how to construct a protection corresponding to the
warrant for believing (tt ptl pt2 P) (see Section 4.3.2). Second, if necessary, the system

adds to the answer an abductive premise corresponding to the constraint that some time
token of type P precedes ptl (see Section 3.6). These protections and abductive premises

are said to be latent in that they are only directions for installing certain dependencies and
adding certain constraints. A latent abductive premise is IN just in case it is contained
the current answer. (Latent protections and abductive premises can be extracted from
the current answer using the functions extract-protections and extract-scheduling-

constraints, respectively.)

Since the protections and abductive premises are latent or unrealized, the user can keep
track of several objects of data type ANS, each constituting a separate hypothetical situation.

........ . .. .
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Each ANS has the necessary information to reinstitute and make permanent its associated
abductive premises, and set up the dependencies needed to monitor the continued validity
of the temporal assertions in the original query. These separate ANSwers can be consulted

to determine the exact nature of the commitments they require (additional constraints that

must be added in order to justify the associated protections).

The normal way that a hypothetical situation is established (i.e., its associated com-

mitments added to the time map on a more permanent basis) is by making an assertion in
the context of the answer associated with that hypothesis. That is, the user simply binds

the desired answer to be the current answer (or uses one of the macros designed for that

purpose), and then makes an assertion in the scope of that global answer. This will cause

the necessary constraints to be added and the protections to be installed in the justification

for the new assertion. The constraints in an answer can also be actualized by simply apply-

ing the function realize-schedu ing-conetraints to the answer. It makes no sense to

actualize the protections unless they are ised to justify something (protections that don't

justify anything only waste time and storage).

4.4.3 Caching: exploiting the structure of time maps to expedite point-
to-point fetches

One of the most frequently performed operations in the TMM involves detem ining the best

bounds on the distance separating two points in the time map. This operation is carried
out repeatedly in processing queries, updating type II protections (see Section 4.3.2), and

in updating TCONDITs when their associated ddnodes become OUT (see Section 4.3.3). It
is possible to speed up the computation of point-to-point distance estimates by keeping

track of (caching) the best known estimates of distances separating selected pairs of points

in the time map. If you cache distance estimates for all pairs of points, then, obviously,

determination of the best estimate for a given pair is trivial. The entire computational
burden rests upon the routines for updating the table used to store point-to-point distance

estimates. An earlier version of the TMM actually did compute the best estimates for all
pairs of points in a restricted portion of the time map called the kernel [Dean 84]. Updating
this kernel required on the order of ns log n integer additions and array references where
n is the number of tokens in the kernel. In typical applications, however, the kernel grew

to several hundred tokens, and updating (resulting from adding one or more constraints)

required several minutes even with all the important procedures optimized and coded in a
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low level language. It became apparent that much of the work expended in updating all of

these point-to-point distances was wasted. The version of the TMM used in this dissertation

performs selective caching; only certain pairs of points are chosen for maintaining an accu-

rate estimate of their separation. This means that the burden of computing point-to-point

distance estimates rest partially with the routines for updating the selected point-to-point

distances, and partially with routines for determining a given estimate on demand.

The point-to-point distance estimates chosen to be cached are selected on the basis

of a general strategy for exploiting the hierarchical structure of tokens in the time map.

The heuristic search routines employed in determining distance estimates take advantage
of the cached distance estimates in order to quickly converge upon a "good" estimate. The

expectation is that for pairs of points for which one might reasonably need to know an

accurate distance estimate, the system would perform as well as exhaustive search, and for

pairs of points that are not normally related to one another, performance would degrade

reasonably 12. It is possible to "tune" the system (adjust the way constraints are weighted

and the search routines compute the best path to follow) for a given application in order to

get significantly faster response time with no decrement in performance compared with a
system without caching. In this subsection we will explore the issues involved in determining

point-to-point distances in some detail.

In the TMM, without caching and making no assumptions about the constraints in the

time map, determining the best bounds on the distance separating two points will require

on the order of ns arithmetic operations where n is the number of points in the time map. If

we assume that the length of a path used in establishing the best bounds never exceeds some

constant, then we can limit the search by simply limiting the length of paths explored. The

assumption is that temporal connectivity is largely determined locally, and rarely does it

require consideration of all the points in the time map. While this assumption is reasonable

in most applications, we can still do a lot better. Tokens in a time map are constrained

relative to one another in fairly regular ways: tasks are related to their sub and super

tasks, persistences ae constrained by some offset from the event that caused them, and
"I am relying upon the reader's intuitions here, but a simple criterion of reasonableness might be that the

scale of the separation between a pair of points determines the accuracy of an estimate of their separation.

For events widely spaced in the time map, no precise estimation of their separation is necessary even though
given enough time an exhaustive search could supply such a precise estimation. For example if I worked

hard enough I could determine to within a day how long it's been since my last visit to the dentist. For
most purposes, however, "approximately three months' will work just fine.

............
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T1

ptl 1.5],p
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pt3 pt4ptS
{3,4]-  -2.3]-

Figure 4.18: A simple network of points

prerequisite tasks are constrained to precede the tasks they serve. If we could rely upon

certain point-to-point distances being known with precision (i.e., the values cached in some

way), then the search paths for most other point-to-p:int distances would be comprised

primarily of these cached values. Good examples of candidate pairs of points for caching

point-to-point distances are the beginning and end of a token and, for a token corresponding

to a task, the beginning of the token and the beginning of the token corresponding to its

immediate supertask in the task/subtask hierarchy. In order to motivate some of the !ower-

level details, I'll present a simple example illustrating some of the issues involved in caching

and then proceed to demonstrate how selective caching pays off in certain circumstances.

Consider the diagram in Figure 4.18. The vertical lines labeled pt! through pt6 indicate

points. The bracketed numbers indicate low and high bounds on the estimated distance

between the two points which they separate. Ti, T2, and T3 are tokens corresponding to

the intervals ptl to pt6, pt2 to pt3, and pt4 to ptS respectively.

Given the information supplied in the diagram, one should be able to determine that

pt3 is coincident with pt4 (i.e., (eit (distance p3 p4) 0 0)). Determining that the

two points are coincident will require on the order of 6' operations using blind search. If

the system selectively caches certain point-to-point distance estimates, then it can make

such determinations with significantly less effort. Suppose that the diagram in Figure 4.18

represents a small part of a task network in a time map. Suppose that the three tokens

T1, T2, and T3 correspond to tasks in this network, and that T2 and T3 are subtasks of TI.

Now, suppose further that the system keeps track of the best estimates on point-to-point

distances separating the following pairs of points:

................................................

. . . . . . . .
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Ti

pt4 t3

Figure 4.19: A simple task network with cached values

9 the beginning and end of each time token

e the beginning of a task and the beginning of its supertask

Figure 4.19 shows the network of Figure 4.18 indicating the cached point-to-point dis-

tance estimates.

Notice that in this network, finding the best estimate between any two points will require

at most a path of length 4. The search strategy can be stated as follows. If you are trying
to extend a path from a point, choose a link corresponding to a cached value that takes
you up (toward supertasksl in the task/subtask hierarchy. If the point has no such link,

then take whatever link corresponding to a cached value you can get. If in the course of
extending a path you find a second path struggling up the task hierarchy, see if you can

combine the two paths to get the required distance estimate.

This strategy is not guaranteed to provide best estimates. If you need convincing,

consider the network of Figure 4.18 with the constraint linking ptl and pt6 labeled (1.6]

instead of [1. 5]. In this network, augmented using the caching scheme outlined above, our

simple search strategy would return the value [-2. 1] in response to a request for the best

estimate of the distance between pt3 and pt4. The correct answer should be [0. 1]. We

can correct for this in most cases by combining a search strategy similar to the one outlined

above with a bounded breadth-first search.

. .. V
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There are three main issues that have to be addressed with respect to our caching

scheme:

1. improving cached values: determining when a new constraint can assist in providing

a better estimate on the distance separating a pair of points selected for caching.

2. removing invalid estimates: determining when an old cached value is no longer valid

due to the removal of constraints employed in its original derivation.

3. expediting heuristic search: using the cached values in a search strategy for speeding

up the computation of point-to-point distance estimates.

The first two of these issues are handled by the same techniques used for keeping track

of temporal conditions. Caching in the time map is implemented using objects of data type

TCONDIT, described in the section on constraint propagation (Section 4.3.3). Recall that

TCONDITs are used for keeping track of certain relationships between pairs of points. A

given TCONDIT can be referenced from either of the two points it relates. During constraint

propagation, if a path is found between the two points of a TCONDIT, an attempt is made

to determine whether or not the path satisfies some criterion, and if so, the path is used

to construct a justification for believing whatever relationship the TCODIT refers to. In

caching, TCONDITs are used to update special constraints, called caching constraints, that

record the best known estimates of the distance separating pain of points in the time

map. Every CONLINK points to a ddnode that determines whether or not it is acceptable

to traverse the corresponding directed edge in the time map. The ddnode for a CONLINK

associated with a caching constraint is IN just in case the upper and lower bounds labeling

the CONLINK are up to date. The propositions corresponding to to the current distance

estimates of caching constraints are not directly identified with the propositional content

of any particular ddnodes. This means that caching constraint ddnodes do not directly

participate in the justification of other ddnodes. They can participate indirectly, however,

by using the stored justification for the current cached value. This justification is guaranteed

to be composed of ddnodes corresponding to user supplied constraints.

As with TCOIIDITs for keeping track of temporal conditions, the estimates for caching

constraints are updated routinely as a part of constraint propagation. The satfun for a

caching constraint just determines if the new-found path supports a better distance estimate

than the current best estimate. If so, the assimfun installs the new estimate and replaces the
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old justification with one supporting the new path. Old estimates and their justifications are

saved so that if the current justification ever becomes OUT the signal function associated

with the constraint ddnode will install the next best estimate with a justification that will be

IN given the current constraints. Since the justification for the current best estimate is just

the ddnodes for constraints in the path, the ddnode will toggle OUT if the derivation for the

cached value is ever undermined. In such a situation, the TCONDIT signal function will see to

it that some valid estimate is iustalled as the current cached value. If the current estimate

cannot be improved (i.e., the upper bound is equal to the lower bound), the assimfun also

removes the TCONDIT from the points that it relates (the TCONDIT signal function reinstalls

if the estimate degrades for any reason). This means that in a time map in which many of

the distances between points are completely determined, propagating constraints for new

points will not be hampered by checking lots of caching TCONDITs unnecessarily.

Search strategies for taking advantage of cached values are implemented by simply

weighting the CONLINKs associated with caching constraints. If you want search to be

biased in favor of moving up the task/subtask hierarchy, then you associate little weight

(or cost) with the CONLINK that goes from the beginning of a subtask to the beginning of
its immediate supertask, but some more significant cost with moving the other way. In the

implementation used in the examples in this dissertation, there was a single weight, *cache-
bias*, associated with constraints for caching TCONDITs. Directional caching TCONDITs (like

those that bias search up a task/subtask hierarchy) assign this weight to only one of the

two CONLINKs associated with a caching constraint. The other CONLINK gets the default

weight for regular constraints. All other caching constraints are bidirectional; that is both

CONLINKs associated with the constraint are assigned the *cach.-biass weight. The only

directional caching TCONDITs are task/subtask links and those that link a top level task

to a reference point. The latter are used when a task is given a deadline with respect to

some absolute time (e.g., the customer needs this order before noon). Bidirectional caching

constraints are used exclusively for caching the duration of time tokens.

The cached values make many searches extremely fast. A time map corresponding to a
pure hierarchy is one in which each task is constrained only with respect to its immediately

superior supertask in the task/subtask hierarchy or with respect to one its sibling tasks

(both tasks share the same immediate supertask). Top level tasks are constrained only
with respect to one another. If time maps were pure hierarchies, then all point-to-point
distance estimates could be performed in time proportional to the depth of the hierarchy.

• . . .. . . . . . . . . . . . . . . . . . . . . . .. .. ... " ."-...".. ". -. "..".."." ." .. -."-"....-'.",. ,." ."-, -.
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In experiments involving several top level tasks expanded into over a hundred subtasks

through several levels of refinement, the results are fairly clear. The additional cost in-

volved in handling caching during constraint propagation increased the time to actually

construct such time maps by approximately ten percent over the time required without

caching. The time required to determine point-to-point distances accurately in the time

map with caching decreased significantly over the scheme using breadth-first search with

a depth cutoff carefully selected to take into account the sort of connectivity expected in

the time map. The scheme with caching broke even with the breadth-first scheme after

determining approximately 20 point-to-point distance estimates. In robot problem solving

tasks involving a time map containing on the order of 100 tokens, it is reasonable to expect

hundreds of point-to-point distance estimates. In such situations, it is expected caching

will result in significantly faster processing times, though no detailed comparisons have

been made as yet.

One obvious obstacle to getting the caching scheme described above to perform well is

the fact that in most applications time maps are simply not pure hierarchies. For example,

networks of tokens corresponding to tasks typically become extremely tangled in the process

of planning. This is due to the interleaving of tasks and the action of persistence clipping

to resolve apparent contradictions. Thbe average time to determine best possible distance

estimates using the caching scheme is still much better than undirected (breadth first)

search. I'm currently experimenting with various techniques for weighting CONLINKs that

depend upon specific properties of particular domains and problem solving applications.

Preliminary results appear promising, but we still need a lot more experience before we'll

be able to tell to what extent savings made in speeding up searches are offset by the increased

effort expended during the propagation of constraints.

4.4.4 Review

This section has explored some of the issues dealing with the processing of temporal queries.

Methods for indexing time tokens and determining their relative offsets were discussed along

with techniques for expediting queries. In particular, two techniques were explored. The

first involved preprocessing conjunctive queries to exploit the manner in which searches

are conducted, and the second dealt with the selective caching of point-to-point distance

estimates.
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* 4.5 Temporal forward chaining

There are two basic types of temporal forward chaining, and each serves a very different

purpose. The first will be referred to as overlap forward chaining and is characterized by
rules of the form (->t (and P1 ... P.1) Q) where the intent is that Q is true whenever

Pi through P. are simultaneously true. The second type is called caueal forward chaining.

This type has a variety of special forms, but all subscribe to the same general format. This

consists of a set of facts, a triggering event, and a set of further events and facts that follow

if the triggering event occurs, and the facts can be shown to span certain intervals. A rule

of the form (pcause (and P1 ... P.) E Q) is interpreted as saying, if an event of type E

occurs such that P1 ... P. are true throughout interval associated with the event, then Q
is believed to be true immediately following the event and persisting indefinitely into the

future. Events of type E are said to cause the persistence of facts of type Q in the context

of P1 through P. being true. Causal forward chaining can be used to model some of the

physics of the domain. It is useful in planning to assist in noticing interesting repercussions

of the planner's knowledge. Not only do these two forms of forward chaining serve different

purposes, but each one raises its own own idiosyncratic implementation issues. The following

two sections will treat each in turn.

4.5.1 Overlap forward chaining

I'll begin by considering how one might go about implementing (static) forward chaining
rules of the form (-> (and P1 ... P.) Q). I will assume familiarity with the sort of simple
forward chaining rules found in most deductive retrieval systems. Simple forward chaining
rules have two components: a trigger pattern and a consequent pattern. The procedural
interpretation is that if an assertion unifying with the trigger pattern is ever added to

the data base, then the system will substitute the unification bindings into the consequent

pattern and assert the result to the data base. Simple forward chaining rules are notated

('P Q).

It should be apparent that simple forward chaining rules will not do the right thing

for rules of the form (-> (and P1 ... P,) Q); it's not likely that anyone will be adding
anything precisely of the form (and P1 ... P.). So we'll create a new predicate, -f d, and
define it in terms of -> so that it will do the right thing with conjunctive antecedents.

The form (Ivd 10P1 ... P.), Q) is just a notational variant of (0, (and P1 ... Ps) Q).

.... ... . ................................................. ...
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The only difference is due to the way the deductive retrieval system treats -). For con-

venience, it is simple enough to make the assertion machinery smart enough to recognize

when something of the form (- (and P1 ... Pn) Q) is added and convert it into the fed
format.

To implement forward chaining with conjunctive antecedents it is sufficient to add the

following two simple forward chaining rules: 13

(-> (fed :("first-conjunct I& ?rematning-conjuncts> ?consequent)
(-) ?first-conjunct

(fed ?reaining-conjuncts ?consequent)))

(- (fed 1<> ?consequent) consequent)

Notice that in the first rule above the consequent pattern is itself another forward

chaining rule. A rule spawned in this way is called an intermediate rule. The proliferation

of such rules can add considerably to the cost of implementation, and hence we should not

employ them carelessly.

Forward chaining techniques, like any other deductive strategy, can be applied in in-

appropriate circumstances. The functionality of fwd is potentially dangerous if handled

carelessly. A simple rule like (fwd 1(trans ?x ?y) (tran ?y ?z)% (trans ?x ?z))

used to generate the transitive closure of some relation trans can result in something on

the order of n2 assertions of the form (trans ?x ?y) where n is the number of objects

that are explicitly referred to in such assertions. In this case, there would also be an equal

number of intermediate rules spawned. In implementing deductions using forward chaining,

the time/space tradeoffs should be carefully considered. Once committed to using forward

Chaining, the user should be alert to the possibilities for avoiding unnecessary work.

Notice that if we ordered the antecedent conjuncts in the order of least likelihood of

appearing, a considerable amount of work could be saved in some cases. This is one way

in which the user can help in eliminating unnecessary forward chaining. In the time map

we'll see how the system can also help in this respect.

In static forward chaining rules, all the variables ae implicitly univerally quantified. In

temporal forward chaining there is also implicit quantification over time tokens. A rule of

the form (->t (and P1 ... P.) Q) is interpreted as saying, where there exist time tokens
t"Note that in any reasonable system supporting simple forward chaining it does not matter the order in

which (- P Q) and P ae added. In either order Q should be in the data base.

_. . . . . . .
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asserting P1 ... P. such that the intersection of these time tokens is not empty, then there

exists a time token asserting Q whose duration is exactly that intersection. A first pass

implementation would follow along the lines of the static case, except in this case we'll have

to keep track of the time tokens. We start with a predicate tfwd that that serves as an

internal form for ->t rules and provides an extra argument to keep track of the tokens
participating in a particular application of a ->t rule. The system transforms assertions

of the form (->t (and Pi ... P.) Q) into the internal form (tfwd (P 1 ... Pn> ICo Q).

To begin with we'll need the following rules:14

(-) (tfwd l(?first-conjunct :& ?remaining-conjuncts>
? 1it- of-tokens- involved-thus-far
?consequent)

(-> (time-token ?first-conjunct ?new-token)
(tfwd ?remaining-conjuncts

:?new-token !k ?list-of-tokens-involvod-thus-far>
?consequent)))

(-> (tfwd !<> ?tokens ?consequent)
(call (establish-consequent-token ?consequent ?tokens)))

Of course, the function establish-consequent-token is going to be doing all the in-
teresting work here, but before we describe its operation we should note a rather glaring

potential for inefficiency.

Consider a rule of the form:

(->t (and (operating ?machinel ?locationl)
(instance-of ?machinel paint-sprayer)
(operating ?nachine2 ?locationt)
(instance-of ?aachine2 arc-welder))

(danger-of-explosion ?locationl))

This just says that, if a paint sprayer and an arc welder are operating in the same

location, there is danger of an explosion. The problem is that the function establish-

consequent-token, which we can presume is likely to be expensive, will be executed even

for pairs of tokens that are not in the least likely to overlap. If the paint sprayer is only used

for half an hour in the morning, and the arc welder only in the afternoon, we will still have to

incur whatever costs are associated with executing establish-consequent-toke. In the

"'Recall from Section 3.2 that when the predicate call is encountered during forward chaining the embedded
LISP form is evaluated. The arguments to the function are not evaluated except in the sense that the
bindinp for the variables are substituted for the variables themselves. It is assumed that the all the
variables will be bound.

.4'o... - . . . . . . . . . . .
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case of rules with a larger number of antecedent conjuncts, there may also be a considerable

cost associated with the spawning of intermediate rules. For instance, suppose that a rule

with five conjuncts has resulted in the generation of the intermediate rule (-> (time-
token Pa ?anonl7) (tfwd !(P4 P05 !<?new-token tok2 tokl Q)). Now suppose that

tokI and tok2 do not (currently) overlap. If there are lots of tokens matching Ps, then

a great deal of unnecessary work will be done in spawning useless intermediate rules. Of
course we can't just forget about tokl and tok2, as the constraints may change and at

some point their overlap be nonempty, but we should be able to suspend work until such a

change occurs.

We can avoid a certain amount of unnecessary work by establishing some extra condi-

tions that prevent forward chaining in the event that two of the tokens participating in a

particular application of a rule can be shown not to overlap. The details are rather hairy,

but the basic idea is quite simple.

The trick is to make the intermediate forward chaining rules of the form:

(-> (tiae-token .first-conjunct ?new-token)
(tfwd ?resaining-conjuacts

(new-token I& ?list-of-tokens-zvolved-thun-lar>
?consequent))

depend upon"5 justifications which are OUT just in cae it can be determined that any
pair of tokens in ?list-ol-tokens-iavolved-thus-far cannot possibly overlap. These

justifications are implemented using TCODITs. The actual strategy for setting up these

justifications can vary. You can set up a justification for each pair of tokens, or you can

set up justifications for selected pairs. Strategies that set up justifications for selected
pairs tend to generate a greater amount of unnecessary forward chaining than schemes that

set up justifications for all pain. As usual, there's a tradeoff. In the time map used in

the dissertation examples, the only justifications set up are between consecutive tokens in
?list-o-tokens-involved-thu-far. This seemed to be effective for squelching unnec-

essary forward chaining in most cases.

Now let's return to the question of what the function establish-consequent-token

does. We want to construct a token that is IN just in case the set of involved tokens (i.e.,
-SSimple forward chaining rules have their own associated ddnodes. The rule does not have its intended

effect unless its associated ddnode becomes IN. The actual consequent assertion part of forward chaining
is accomplished using signal functions. The assertion will depend upon, among other thinp, the ddnode
associated with the rule.
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Frame of reference: (begin operating6) Scale: 1.0

operating5 (operating paint-spraying-unitl3 work-bay4)
II --------------- I

operating6 (operating arc-velding-uzit46 work-bay4)
II --------------------.---------------------- >

danger35 (danger-of-explosion work-bay4)I-------..II

Figure 4.20: Token derived by temporal forward chaining

those tokens collected in the course of forward chaining) have a non-empty intersection.

To do so, we construct a special sort of token called a derived token. Tokens constructed

by the user have the property that their beginning point is always constrained to occur

before their end point. Derived tokens have no such property. In fact, derived tokens are

determined to be IN just in case it can't be shown that the 'end" of the token comes before
its -beginning'. If we add the right set of constraints, this will coincide with the set of

involved tokens having a non-empty intersection.

The procedure is simply to constrain the beginning of the derived token to coincide or

follow the beginning of all tokens in the set of involved tokens, and constrain the end to

coincide or precede the end of all such involved tokens. The ddnode corresponding to the

derived token has a single justification that consists of those dependencies extracted from the

current answer at the time establish-consequent-token is executed, a set of in-justifier

ddnodes corresponding to the set of involved tokens, plus the out-justifier corresponding to

the ddnode associated with the temporal condition (pt-< (end the-derived-token) (begin

the-derived-token)). This will ensure that the derived token is IN just in case all of the

involved tokens are IN and their intersection is non-empty.

This establishes that the token exists but it fails to pin down very accurately when the

derived token begins. This raises a rather complicated issue for which I have no complete

answer. Consider the time map in Figure 4.20. According to this map it seems reasonable

to assume that the beginning of the token operatingO and the beginning of the token

danger35 are coincident, but given the constraints we've described thus far for derived
tokens there's no way of deducing this.

Let the set of candidate beginners be the set of all beginning points of tokens in the

ms . . . .... .- . ..-.
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set of involved tokens. We can eliminate from this set any points that precede other points

in the set. If there is only one candidate beginner then it can be made coincident with

the beginning of the derived token. The dependency network for managing this is set up

by establish-consequent-token. It incorporates a number of TCONDIT/constraint pairs

similar to those used for clipping persistences to resolve apparent contradictions. This

method of "pinning" down the beginning of the derived token does not require that all the

tokens be totally order, but it is certainly not as accurate as it could be. Suppose that a

data base for managing a real estate firm has the following rule:

(->t (and (gs-service-connected ?residence)
(electric-service-connected ?residence))

(available-for-occupancy ?residence))

Suppose further that it's known that the house at 315 West 42nd Street has had both gas

and electric services connected sometime in the morning. But there is no way of determining

the order in which the actual connections occurred. Whatever else is known, it's clear the

house at 315 West 42nd Street is ready for occupancy after 12.00, but the scheme described

above won't allow you to conclude that. In most cases this will not cause a problem. It is still

possible to conclude the duration persistences accurately, but it can cause incompleteness

in the case of interactions with causal forward chaining rules of the sort to be described

next. It doesn't tell you false information; it just misses some rather obvious inferences. I

have made no effort to correct this deficiency in the current time map routines. I suspect

that a general solution will require a good deal of computation. Perhaps I will feel more

motivated to correct the problem when this sort of forward chaining proves itself to be a

critical part of temporal reasoning and one that is seriously plagued by problems arising

from just this incompleteness. For now, the current scheme is serving adequately. In fact,

it is causal forward chaining that promises to be the more useful of the two types of forward

chaining, and, by itself, causal forward chaining is not hampered by the problem we've just

been discussing.

4.5.2 Causal forward chaining

This subsection describes techniques for implementing auto-projection rules that capture

the underlying physics of a domain. In Chapter 3 we saw examples of such rules that made

it easy to reason about how parts move around a factory under the influence of robot arms

and conveyors. In this section, I will sketch the implementation for performing a special

clas of auto-projection rules involving the predicate pcause.

.
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The actual implementation of auto-projection rules is relatively simple in comparison

with overlap chaining. I'll describe one way"' that pcause might be implemented, but the

more general auto-projection rule is not much more complex.

First rules of the form (pcauwe (and P1 ... P.~) E Q) are transformed into (-> (time-

token E ?tok) (->causal !-(P1 ... Ps> ?tok W). Next we have a set of simple forward

chaining rules similar to those used for implementing overlap chaining rules:

(-> (->causal Wcfirst-conjunct I& ?remaining-conjunctx>
?trigger-token
?consequent)

(-> (time-token ?frst-conjunct ?new-token)
(call (pcausal-complex ?trigger-token

?new-token
?remaining-conjunct*
?consequent))))

(-(->causal !<> ?trigger-token ?consequent)
(and (time-token ?consequent ?result-token)

(elt (distance (end ?trigger-token) (begin ?reuult-token) 0 0))))

The function pcausal-complex simply asserts (->causal ?remainimg-conjuncts ?trigger-

token ?consequent) dependent upon ?new-token spanning ?trigger-token. This depen-

dency tends to squelch unnecessary forward chaining.

In Chapter 3, I mentioned that temporal forward chaining rules could be &temporally

gated". This meant that one could limit the scope of temporal forward chaining rules by

simply expressing them as time tokens. The assertion:

(time-token (pcause (and (operational-status ?appliance in-service)
(at ?appliance ?location)
(instance-of ?appliance television))

(lightning-strikes ?location)
(operational-status ?appliance tried))

summer-prediction3l)

is meant to capture the rule that a working TV in the vicinity of lightning striking will

probably be put out of commission. But you might only believe that rule during the later

part of the summer when the lightning storms are really violent. In such a case you could

"The actual implementation takes advantage of the details of the deductive retrieval system. The imple-
mentation shown is primarily for tutorial purposes though it conforms to the spirit of the actual TMM
code.
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simply constrain the token sumer-prediction3l to span only the appropriate interval.
The token is said to gate the rule.

Implementing gated temporal forward chaining rules is quite simple using the methods
we've been discussing in this section. All that is required is a simple preprocessor to watch

for tokens with the proper schemas and some means of setting up the necessary dependencies

and simple forward chaining rules.

4.6 Dealing with choices

This section describes the reason maintenance system developed for the TMM. This RMS

combines features of McDermott's system for handling contexts [McDermott 83] and deK-
leer's assumption based RMS [deKleer 84]. The RMS used in the TMM supports the sort

of reasoning about alternatives described in Section 3.8.

Section 3.8 described an option as a special sort of premise. An option is a proposi-

tion that has no justifications, but participates in the justifications of other propositions.
Options are used for labeling other assertions in order to facilitate reasoning about alterna-

tives. Simplifying somewhat, if an assertion is labeled with an option, then that assertion

is believed only if that option is taken. A data base containing assertions labeled with op-
tions represents a set of overlapping belief configurations [Martins 83]. Each configuration

corresponds to a set of options and the assertions that are believed given that those options

are taken.

Options are a special instance of what are called gating objects. Every ddnode corre-

sponding to an assertion in the data base has a label consisting of a boolean combination

of gating objects. The system sees to it that these labels are maintained in accord with
certain criteria for consistency and well foundedness. The label is kept in disjunctive normal

form as a list of justifications composed solely of gating objects. Routines outside the RMS

interpret these labels for various purposes. The interpretation of a label usually consists

of considering one or more possible assignments to the set of gating objects (considered as

boolean variables) where an assignment is just a mapping from gating objects to the set
(IN,OUT) (IN being thought of as I and OUT as 0). A label is said to evaluate to IN or

OUT under an assignment to the current set of gating objects.

The notion of consistency and well-foundedness for Doyle type data dependency net-
works can be extended to deal with gating objects in a straightforward manner. McDer-
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mott's paper [McDermott 83] describes such an extension for implementing contezta. A

context can be thought of as simply a subset of the set of all assertions. Each context

can be considered as a separate data base. A context is associated with an assignment to

gating objects. An assertion is believed in a given context just in case its label evaluates

to IN under that context's assignment. The status of an assertion with respect to a given

context is just the valuation of that object's label under context's assignment. McDermott's

techniques make it possible to perform reason maintenance in such a way that switching

between contexts is handled efficiently. Switching contexts essentially requires no more

than making sure that the indexing machinery retrieves only propositions corresponding

to assertions with labels that evaluate to IN under the current context's assignment. The

data base is said to be gated by the current context. Reason maintenance in McDermott's

system effectively computes the status of all assertions with respect to all possible contexts

(i.e., all possible boolean combinations of the current set of gating objects).

In the time map, gating objects can be used to establish McDermott-type contexts.

Their primary use, however, is for reasoning about several (possibly exclusive) alternatives

simultaneously. This is more in line with deKleer's system for doing qualitative reasoning

[deKleer 841.

DeKleer's system is an assumption based RMS. Instead of ddnodes we have values con-

sisting of a proposition, a set of assumptions under which the proposition holds, and a set

of justifications. Assumptions correspond roughly to what I have been calling gating ob-

jects. Unlike Doyle's system in which each proposition is identified with a unique ddnode,

any number of values can refer to the same proposition. If the set of assumptions for a
given value is found to be contradictory, then the value is removed from the data base.

Values don't switch from being believed to not being believed. One advantage of deKleer's

approach is that the notion of context is built in; every set of assumptions constitutes a

context. One disadvantage is that we have lost our handle on belief. DeKleer's system

won't tell us if there is no longer a warrant for believing in the proposition P.

Suppose that my current plan for going to New York this weekend depends upon a

friend giving me a ride into Manhattan. If that ride falls through, then I will probably

want to consider another means of transportation. It is precisely because the ride is no

longer available that I am willing to consider alternatives. Noticing such lapses of belief

and taking action to respond appropriately requires some method for backtracking, which

deKleer's system seeks to avoid. DeKieer assumes that the set of choices being explored

|-. .. "
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always lead to a solution; there is never any need to go back to a previous decision and

propose additional alternatives. In most planning applications, the computational realities

demand that we make choices that may later be retracted. The conditions under which a

given choice is made can change. We cannot at all times pursue all possible alternatives,

and hence some form of backtracking is unavoidable. On the other hand, this chapter is

arguing that there are occasions in which it is useful to explore some number of alternatives

simultaneously.

We need the functionality of the Doyle-type RMS in order to detect when our beliefs

are undermined in the course of gathering new information. We need the functionality of

the deKleer-type RMS in order to reason about a number of alternatives simultaneously.

It turns out that we can modify McDermott's RMS to get exactly what we need. To show

how, I want to begin by demonstrating what McDermott's system lacks.

Recall the example from Figure 3.21 on page 126. In the figure, the ddnode for

the proposition (linger-over-lunch lunch-spot) depends upon our choosing (z lunch-

spot cafeteria) and not choosing (- lunch-spot diner). Of course we know that (

lunch-spot cafeteria) and (a lunch-spot diner) are mutually exclusive choices, but

what's to stop the program from making inappropriate combinations? For instance, what's

to stop us from formulating a plan that makes use of the facts that if you eat early, the

food is fresher and there's more variety, and if you eat later, it's easier to find a table?

Obviously, you can't take advantage of both, but how does the RMS assist in avoiding such

impossible combinations?

In the deductive system that employs McDermott's RMS, the problem just doesn't come

up. The system always has a context or current data pooL A data pool is just an assignment

to the boolean variables or gating objects that comprise ddnode labels. At any one time the

user sees only assertions in the data base with labels that evaluate to IN under the current

assignment (data pool). It is assumed that the user will not create and reason in a data

pool which supports two exclusive alternatives.

In the system employed by the time map, there is no notion of a current data pool. In

some sense we are searching for a data pool: the right combination of choices that will make

everything come out for the best. It would be inefficient to search through all the possible

data pools sequentially because we don't know what we're looking for, and we have no idea

when it will suddenly become apparent that we've found it. The planner would have to be

continually cycling through all the possible data pools.

..... -. .: ; ".:". ............. .".-". .".".". -/ '" .""...... '. ". ." • ".-. " ., ......................................................--.-....,.........-..-..."-.."".-."......""...:" , ,'". "-"



CHAPTER 4. IMPLEMENTATION 199

In the time map, the query routines are designed to return not only a set of bindings

and a restriction on the current partial order but also a set of gating objects that must

be chosen (IN) or not (OUT) in order for the query to succeed. This last constitutes a

partial assignment to gating objects, and warrants one or more partial world descriptions

(PWDs). A PWD consists of all assertions whose labels evaluate to IN under an assignment

satisfying certain additional constraints specified by the user. Such an assignment is called

a choice assignment. The additional constraints determine what constitutes a "consistent*

description of the world.

An important part of assisting the user in reasoning about alternatives involves eliminat-

ing from consideration impossible or undesirable combinations of alternatives. Certainly we

can't combine exclusive alternatives. It's also possible that the user might wish to specify

that certain combinations of alternatives lead to unpleasant circumstances and should no

longer be considered. Both of these are accomplished by allowing the user to specify con-

junctions of gating objects that are not to be considered. Such a conjunction is traditionally

referred to as a nogood [Stallman 791. If the user specfies that the conjunction of gating

objects ni and n2 is nogood, then all assignments associated with PWDs must assign one of

n! or n2 OUT. A set of mutually exclusive alternatives generates one nogood for each pair

of alternatives. In certain situations, it is also useful to be able to state that every choice as-

signment must assign IN to at least one alternative from every set of exclusive alternatives.

This means that it's quite possible that the time map contains no 'consistent' description
of the world. Things become significantly more difficult once we allow arbitrary constraints

on what constitutes a "consistent' description of the world. How do you recognize when all

of your choices have gone bad? Answering this raises a number of complications that will

b- explored in 4.6.3. Before we get to that, I want to describe the RMS update algorithm

for handling gating objects.

4.6.1 Updating data dependency networks containing gating objects

This section presents an algorithm for incrementally updating data dependency networks

containing gating objects. The algorithm was chosen for clarity, not optimal performance,

and a number of improvements are incorporated in the actual implementation. Since most

of these are obvious and uninteresting, they won't be discussed here.

In the Doyle system, a ddnode label was either IN or OUT. Now we're considering a

system in which labels are boolean combinations of gating objects. It is worth considering
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some properties of the range of labels. First, we asume that at all times there arm a finite
number of gating objects (not too hard in any real system). A .otisfiabe label is just

one for which there exists an assignment under which the label evaluates to IN. The set

of all possible satisfiable labels (ignoring equivalent forms) together with the operations

of conjunction and disjunction form a finite lattice. The elements of the lattice can be

partially ordered by the (transitive and reflexive) relation of eubeumption. We say that 'Li

subsumes L2' where LI and L2 are labels, if L2 evaluates to IN under all assignments that

LI evaluates to IN (there could be assignments under which L2 evaluates to IN but Li

evaluates to OUT). Given two justifications, J1 and J2, consisting only of gating objects,

Ji is said to subsume J2 if the set of in-justifiers of J2 is a subset of the set of in-justifiers

of Jl and likewise for the sets of out-justifiers. So, for example, (6 i .n2)(Wa3) subsumes

(Wl)0) whereas ()2){n3}) does not. A justification J I subsumes a label or disjunction

of justifications, LI, if it's not the caw that there exists an assignment under which all of

JI's in-justifiers are IN and all its out-justifiers are OUT and LI evaluates to OUT. One

can determine if such an assignment exists by making the minimal partial assignment that

forces J1 to be IN and then proceeding by the reductio method [Hughes 681 (also called

semantic tableaux method) to try to make LI OUT. Notice that it's not sufficient to simply

check that there exists a justification, J2, in LI such that JI subsumes J2. If JI is ((A}O)
and Li is (((A C} ) ((A 0{C)), then J1 subsumes neither of the justifications in LI,

but it's clear that Ji evaluates to IN whenever Li evaluates to IN. Now we can extend

this notion to a relation on labels (disjunctiom of just fcatiow) by saying that a label LI

subsumes a second label L2 if each justificatiom (disjuct), J1, in Li subsumes L2. We can

consider the label IN as the justification (00) with the empty set for both in-justifiers and
out-justifiers. The label OUT is simply O. Any label subsumes IN, and OUT subsumes

any label. IN and OUT are the extremal values in the lattice. We say that a label becomes
&more IN', if it is given a new label such that its old label subsumes the new but the new

label does not subsume the old (for "more OUT reverse old and new). It should be clear
that a label can only become more IN (OUT) a finite number of times without becoming

more OUT (IN)"7 . If there are no gating objects, then the lattice reduces to (IN,OUT).

The system is designed not to inflict a cost on those who have no need of gating objects.

"It's also possible that a label can change (the label now evaluate to IN under a different set of assignments
than it did before) without becoming either more IN or more OUT. The elements of the lattice are only
partially ordered. However, you can transform any label into any other by a finite number of changes
each consisting of making a label either more IN or more OUT.

S.".. ... . ... . . . . . . . . ..,. ... *. ._ ' , I
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The objective of the update algorithm is to add or remove a justification j from a

node n, and recompute the labels of all possibly affected nodes. Every node n has a set of

juslaficands. A node m is a justificand of a node a if a has at least one justification in which a

appears. A label is said to be a legal label if it has the form of a list of justifications such that

all ddnodes appearing in those justifications are gating objects. As was mentioned earlier,

this form can be interpreted as a boolean formula in disjunctive normal form (DNF). Every

ddnode has two fields, both of which are legal labels. These are called simply the label and

old-label of the node. The old-label is used by the system to determine the extent of the

change due to the latest modification to the net. This information is used in conjunction

with signal functions to respond to specific changes in a nodes status. The set of nodes

possibly affected by a change in the justifications of a consists of n and (recursively) all the

nodes possibly affected by a change to the justificands of a. The update algorithm also tries

to simplify labels using a variety of techniques".

The update algorithm is divided into four basic stages:

1. find all nodes possibly affected by the current change and mark them

2. recompute the labels of all the nodes found in the previous step

3. filter all the newly recomputed labels to eliminate disjuncts (justifications) which are

disallowed by the current set of nogoods

4. execute the signal function of each node (found in 1) whose label has changed

Having made changes to node a (added or removed justifications), step one is carried out

by applying to n the function mark-and-initialize defined in Figure 4.21. This function

also computes the set of nodes possibly affected by the change (i.e., all those visited).

The second step is carried out by applying the function coupute-new-label (again in

Figure 4.21) to each node visited in the previous step. The easiest way to see that this

terminates is to note that the algorithm continues only as long as the labels continue to

become more IN (the newly created label subsumes the current label). Since this can only

happen a finite number of times and no label ever becomes more OUT during this stage,

"If the label contains a disjunct that is just IN (i.e., (Qf()) or the label is a tautology (e.g.
((4A}{)) ({)(A)))) then replace it with (({)fl)). More generally, if the label contains two disjuncts, DI
and D2, such that Di subsumes D2, eliminate D1. If the label contains a contradiction (e.g., ((({A)(A))))
then replace it with 0.
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mark-and-initialize (n)
1. set the old-label of n to be the label of n
2. set the label of n to be OUT (the empty disjunction)
3. place a on the list of visited nodes
4. for each justificand m of n that has not been visited

mark-and-initialize (m)

compute-new-label (n)
1. create a new label as follows
a. substitute for each non pting object a in the justifications of
n the label of m

b. convert the new label to DNF and simplify
2. if the current label subsumes this new label but not vice versa

then for each justificand a of n compute-nev-label(m)

Figure 4.21: Functions for updating dependency networks

the algorithm must terminate.

The result is that every node now has a legal label. It should be clear that this label is

consistent. The computation guarantees that the label of a node a follows from the label of

the nodes in the justifications of a. To see that each label is well-founded, it is sufficient to

see that, (a) following mark-and-initialize all labels are well-founded (they're all OUT)

and, (b) that each substitution made by compute-new-label must therefore result in a
well-founded label.

To understand how the third step of the overall update algorithm is carried out, it
is necessary to understand how nogoods are implemented. As was mentioned earlier, all

nogoods are conjunctions of gating objects. This allows us to represent a nogood as a sorted

vector of gating objects. Each gating object has a pointer to all those nogoods that it is the

first element of. Filtering is handled by examining each justification (disjunct) in a label

and eliminating those whose set of in-justifiers is a superset of some known nogood. Only
the nogoods referenced from the gating objects in the set of in-justifiers need be tried.

Finally, we have to determine what signal functions to call. One criteria might be
simply that the labels are not equivalent (i.e., they do not mutually subsume one another).

However, more sophisticated criteria are often necessary. A common thing in the time map

is to notice when a ddnode, say corresponding to a constraint or time token, becomes more

IN or more OUT. Another change worth noticing involves a ddnode whose label is OUT

. ..o. -
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under all assignments to gating objects that satisfy some subassignment. So, for instance,

you might want to notice if a token is OUT, given that some other token is OUT. This is

useful when you want to detect that an action is no longer warranted for preventing some

event. Suppose that you justify paying a parking ticket on the basis that had you not

paid, the city would impound your car or do something equally nasty. You plan to pay

the ticket, but you base this decision on the assumption that, if you don't (i.e., the gating

object corresponding to the decision to pay is OUT), then the city will do something nasty.

If the token corresponding to the city's potential for malevolence is ever OUT, given that

the token corresponding to your paying is OUT (i.e., the gating object corresponding to

your decision to pay is assigned OUT), then you're wasting your money. Setting up a signal

function that fires under just these conditions is relatively easy to do.

4.6.2 Modification to the TMM to handle gating objects

There are a number of modifications that we have to make to the TMM algorithms dis-

cussed in the preceding sections before they will work with gating objects. Every part of the

algorithm that has to take into account the labels of ddnodes is affected. Constraint prop.

agation, determining point-to-point distances, and caching routines all have to interpret

the labels of ddnodes corresponding to constraints. Almost everywhere that the algorithms

discussed in previous sections stated 'becomes IN', or 'becomes ouTr, we have to replace

with 'becomes more IN', or 'becomes more ouT'. The top level invariant maintained by

the temporal reason maintenance described in Section 4.3.5 system can be rephrased as:

Each token, Ti, can be shown to clip each contradictory token, T2, under

just those assignments (to gating objects seen as boolean variables) such

that the labels of TI and T2 evaluate to IN, and there exists a path through

the time map such that the beginning of T2 can be shown to precede the

beginning of Ti, and the labels of each CONLINK in the path establishing the

ordering relation also evaluate to IN.

All these additional complications are not worth a great deal of effort to explain. The

proof of correctness is essentially the same except slightly more wordy. Caching requires

some additional bookkeeping, but the main ideas still hold. There ame, however, a couple

of moderately high level ideas that are worth some discussion. In particular, I would like

to communicate to the reader something of the flavor of interpreting time maps containing
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gating objects. In order to do so, it will be necessary to understand some of the rudiments

of how constraint propagation and search works with gating objects.

To begin with, the notion of a path through the time map has become more complicated.

Now every path has a label computed from the labels of the ddnodes in the set of supporting

ddnodes for the path. That label determines which PWDs the upper and lower bounds of

the path are believed in. Whether or not you can extend a given path (during constraint

propagating or finding point-to-point distance estimates) using a particular directed edge

(CONLINK) depends upon the current set of nogoods and the labels of the path and the

ddnode corresponding to the directed edge. I'm not going to provide details for any of

this. Most of it is just bookkeeping and graph search. I do want to illustrate some of the

repercussions, however. In particular, the ddnodes corresponding to point-to-point relations

will be IN under certain assignments to gating objects, and OUT under other assignments.

This means, for example, that in one PWD a persistence might endure indefinitely (the

upper bound of the persistence is *pos-if*), while in another PWD it is clipped by a

contradictory ddnode.

The invariant associated with TCONDITs and constraint propagation discussed in Section
4.3.3 was defined purely in terms of IN and OUT. Taking gating objects into account, the

invariant could be restated as: each ddnode corresponding to a relationship between a pair
of points has a label that evaluates to IN under just those assipments to gating objects

where the labels of constraints in the time map warrant it. An example should illustrate

the important points. Figure 4.22 shows a time map with three points, three constraints,

and one point-to-point relation, (pt< pt3 pt2) (A and B are gating objects). The path

from pt3 to pt2 using constraints C1 and C2 has a lower bound of I and an upper bound of

4. Since the lower bound is greater than or equal to zero, this means that (pt< pt3 pt2)

is satisfied. The justification ((ni a2){) is added to n4, and the node's label is updated

using the RMS to reflect the new conditions for belief. There is another path from pt3

to pt2 using just C3 which also satisfies (ptC pt3 pt2). In this case, the justification is

(03}{}), and as before the RMS performs the labeling. The label of 4 can be interpreted

as saying that pt3 is believed to precede pt2 just in can either A or 3 is chosen. This sort
of interpretation, suitably extended to deal with conjunctive queries, is employed by the

time map query routines.

Now, let's suppose that pt3 is the beginning of tokenl, and pt2 is the beginning of

tokon2 where tokeni and token2 are contradictory (see Figure 4.23). Suppose that n4

_g7,
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oC2 pt2

pt3

ddnode: label:
n2 -- C1 = (elt (distance ptl pt3) 1 3) MOO))
ni -- > C2 = (elt (distance ptl pt2) 4 5) (((30))
n3 -- ' C3 a (elt (distance pt3 pt2) 2 3) (({B}{))
n4 --> (pt< pt3 pt2) (A}) (MOD

Figure 4.22: Monitoring point-to-point relations

tokeni P
II------------ ?????????????????????????
pt3

token2 (not P)
II ---------------------
pt2

Figure 4.23: Clipping constraint with gating objects

justifies the clipping constraint (elt (distance (end tokenl) (begin tokea2)) *pos-

tiny* *pos-inf*) (i.c., n4 determines whether or not tokenl and token2 are apparently

contradictory). Now given the additional constraints from Figure 4.22, the time map in

Figure 4.23 can be interpreted as saying, if either A or B are chosen, then tokeni precedes

token2 and the latter clips the former. If neither A nor B are chosen, then tokenl persists

indefinitely.

There are any number of other details that have to be considered in designing reason

maintenance systems of the sort described here. Eventually, I hope that someone will write a

book detailing the functional and computational tradeoffs implicit.in the various alternatives

RMS designs available. This is not the place for such a discussion. As for the details of

the TMM algorithms, any more detailed exposition would probably require publishing the

code (suitably cleaned up). Unfortunately, this is not a viable option, given that this code

runs over 6,000 lines, and requires intimate knowledge of the workings of the underlying

-. . . . . . . . ...
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deductive retrieval system. Most of the issues I have overlooked in the dissertation have

straightforward solutions that should be familiar to most computer scientists. There is one

further issue, however, that I wish to bring up. This concerns the problem of determining

when you've run out of choices. The following section concerns certain inadequacies of the

Doyle and deKleer type systems with regard to the task of reasoning about choices. I'll

demonstrate why the propositional deduction system of McAllester [McAllester 80] is better

suited for performing the requisite reasoning task.

4.6.3 Running out of choices

One problem that arises in reasoning about alternatives concerns determining when an

alternative is still viable. In the absence of gating objects a propositional object was either IN

or OUT. If a ddnode corresponding to the assertion that a plan was working became OUT,

then the planner had to correct the plan to ensure that the associated task was achieved.

Now we have the situation where a plan may work under certain sets of alternatives, but

not under others.

Consider two alternatives with corresponding gating objects A and B. Suppose that

A justifies the expansion of a plan PLI, and that there is a ddnode a,, cesponding

to (acceptable-plan-for PL, task3l), which depends upon A and the fact q is true

throughout task3l. Now suppose that B justifies the expansion of another plan PL2, which

results in (not P) and thereby undermires the protection of Q throughout tauk3l. At the

time when the effect (not P) is added n, Aill become more OUT. Its label might include a

justification of the form (A){B)). This can be interpreted as saying that PL, is an accept-

able plan for task3l just in case the alternative A is chosen and B is not. The plan PLI may

be acceptable in other circumstances, so this is not sufficient grounds for eliminating either

of the options A or B. Of course, there are situations in which an option can be totally ruled

out on the basis of alternatives available at the moment. Suppose that A, and A: are the

alternatives for taskl and 51 and % are the alternatives for task2. If I determine that A,

and B, result in an unsatisfactory state of affairs, and similarly for A, and %, then I have

effectively ruled out A,. Determining this in general is not easy, and responding effectively

is even more difficult.

First of all, let's consider what has to be represented. As an example to make the dis-

cussion concrete, suppose that you are planning your itinerary for an upcoming conference.

To begin with, a planner has to be able to describe its alternatives. For instance the choice,

. o . . . .



7 7

CHAPTER 4. IMPLEMENTATION 207

Graphical representation: Clause representation:
(or taxi rental)A A (or (not taxi) (not rental))

taxi rental ski tourist (or ski tourist)
/ (or (not ski) (not tourist))/\ (or (not rental) gas-guzzler economy-car)

gas-guzzler economy-car (or (not gas-guzzler) (not economy-car))

Nogoods:
(or (not ski) (not gas-guzzler))
(or (not ski) (not economy-car))
(or (not taxi) (not ski))

Deduced unit clause:
(or (not ski))
(or tourist)

Figure 4.24: Simple decision tree

"you can either take a taxi or rent a car to get from the airport to the convention center'

might be notated as the disjunctive clause (or taxi rental) in which taxi, and rental
are boolean variables. Alternatives are also often dependent upon one another. So, "if you

rent a car, then you can rent either a big roomy gas guzzler or something more economi-

cal" could be handled with (or (not rental) guzzler economy-car). To state that the

alternatives are mutually exclusive we add the clauses (or (not taxi) (not rental))

and (or (not guzzler) (not economy-car)). Finally, it will be necessary to state that
certain sets of alternatives are unacceptable (i.e., nogood). Let's make our example a lit-

tie more interesting. Suppose that you are also either going to do some sight-seeing or

ski on your trip (i.e., (or ski tourist)). During planning you realize that youll need
transportation to travel to the ski areas so you can't both take a taxi and ski. This would

be represented as (not (and ski taxi)), or in disjunctive form as (or (not ski) (not

taxi)). Also, you can't afford to both rent the luxury car and ski, and, being the perfect

yuppie, you're ashamed to be seen at a fancy ski resort in an economy car (i.e., (or (not

ski) (not gas-guzzler)) and (or (not ski) (not economy-car)) respectively). The

complete situation is presented in Figure 4.24.

Notice that in this case you should be able to deduce that, at least according to the

alternatives explored so far, you won't be skiing on this trip. If you take the clauses in Figure

',. . . . . .... ~-. -. ...- - .- . ,. :. -, -. .. . ,.., , .
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4.24 at face value perhaps, there's no cause for alarm. After all, you had two alternative

plans for enjoying yourself on this trip and only one of them appears to have failed: you

can still go sight-seeing. Nevertheless, it seems that you would probably want to think a bit

more about going skiing to see if you could save the plan (perhaps you could go in with some

other young professional and rent a more suitable vehicle). The problem is a familiar one in

planning; what to notice and how to respond. The ability to reason about alternatives does

not help in the least in this respect. In fact, there's more to reason about and it's harder to

determine when things are not working out. Even if the planner's rule base is guaranteed to

contain the components for a solution to any problem selected, you can't always guarantee

that the alternatives you choose to explore will provide the necessary components. You

can't expect to reason about all possible alternatives simultaneously; there are just too

many. The upshot of this is that you still have to be able to detect when things are failing.

Handling the sort of deduction required to determine that the skiing alternative in

Figure 4.24 was in trouble is not easy in the Doyle or deKleer type reason maintenance

systems without considerable augmentation. We're really trying to compute an assignment

to boolean variables satisfying an arbitrary set of boolean constraints. The general task is

intractable, but since we're assuming a small set of variables (gating objects), the potential

exponentiality shouldn't concern us. In order to get the necessary functionality, the TMM

employs some techniques used by David McAllester in his deductive system [MeAllester 801.
In McAllester's system, propositions (in our case gating objects corresponding to alterna-

tives) are either true, false, or unknovs. The system performs propositional deduction

using an internal clause form and a reductio method to resolve contradictions. McAllester's

system uses invariants to assist the user in coordinating its computations with those of
the deductive machinery. The TMM employs a high level invariant that sees to it that

unknowns (alternatives which are not necessarily chosen) are forced to be false in order to

ensure completeness of the propositional deduction algorithm. If assigning an unknown to
be false results in a contradiction, the system retracts the assignment and tries another. By

carefully adding additional clauses in the course of resolving conflicts, the system guaran-
tees that if a satisfying assignment exists, the algorithm will find it, and if the constraints

are inconsistent, the algorithm will detect this also. If the constraints are consistent, then
the system will satisfy all clauses and detect when an alternative is forced one way or an-

other (it does this by deducing unit clauses (e.g., (or (not ski))). Signal functions can

be attached to nodes corresponding to an alternative in order to notify the user if that

alternative must necessarily be chosen or rejected. As I mentioned, the system computes

. . . . . . . . . . . . . . . .
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whether or not a boolean formula in DNF is satisfiable. I am assuming that the number

of alternatives is relatively small. The variant of McAllester's techniques used in the TMM

seems to perform quite well on the sort of input expected from a planner, even on examples

involving upwards of 100 boolean variables. It's not likely that the TMM could handle a

time map of any complexity involving 100 gating objects. So far, the TMM appears to

work reasonably well on time maps involving a dozen or so gating objects at a time. The

techniques described here were not meant, and are not expected, to perform well with a

iarge number of outstanding alternatives. Splitting the world (introducing addiadozenating

objects) should be done only in situations where the planner has some reason to believe

that it will pay off. Admittedly, determining the potential for such a payoff will be difficult.

All I can say is that humans appear to be quite good at it, and eventually our programs
will have to be also.

4.7 Loose ends

There are any number of L-ues that have not been discussed in this chapter, but that

probably deserve some mention. In this section, I will talk about two issues that have

concerned me during the design of the TMM, but for one reason or another were not
addressed in the final implementation. The first deals with a sort of nonmonotonic inference

that we have ignored so far, but that has been found to be useful in certain situations. How

should the system handle queries of the form (tt ptl pt2 P) in which it is not likely that

there will be mention of tokens of type P, but there may be any number of tokens of type

(not P)? In some circumstances, it might be useful for a query to succeed just in case

there is no reason to believe it will fail. That is to say, the query should succeed just in case

there is no subinterval pt3 to pt4 during the interval ptl to pt2 such that (tt pt3 pt4

(not P)). This turns out to be difficult primarily because you are forced to quantify over all

possible contradictory tokens. The second issue concerns the fact that there can be two time

tokens, both asserting the same fact type, say P, whose corresponding intervals overlap, but

the TMM cannot deduce the truth of P throughout the union of the corresponding intervals.

In the following I will explain why these issues are worth worrying about and suggest some

possible approaches to dealing with them.

". o ...............
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4.7.1 Anti-protections

Suppose that we're in a domain where an object can have any number of other objects

sitting on it (unlike simpler versions of the blocks world). Now consider how one would

handle the query (tt ptl pt2 (clear table38)). It would be asking too much for the

data base to have explicit tokens indicating just those intervals in which (clear table38)
is true. This might be reasonable in a totally ordered time map' 9 , but in a partially ordered

time map things are considerably more difficult. Instead, we'll engineer it so that (tt ptl

pt2 (clear table3g)) succeeds just in case there are no tokens asserting something of the
form (on ?some-object table38) such that the intersection of that token's corresponding

interval and the interval ptl and pt2 is nonempty. This is just a specific instance of a more

general form of nonmonotonic inference described by the following rule:
( - (tt fbegin ?end ?q))

(1orall (tok)
(if (time-token (not ?q) tok)

(or (pt< (end tok) ?begin)
(pt< ?end (begin tok))))))

The query (tt ptl pt2 (clear table38)) is equivalent to (N (tt ptl pt2 (not

(exists x) (on x table38))))). Of course, the above rule is not a standard backward
haining rule. I think, however, that it is quite clear what is expected with regard to the

quantification in the antecedent of the above rule. Handling queries involving the above rule

is somewhat complicated, but it introduces no insurmountable problems. For the query (tt
ptl pt2 (clear table38)), it is necessary to ensure that no token contradicting (clear

table38) intersects the interval ptl to pt2. Setting up the correct protections is a bit

more complex. In a standard protection of the sort discussed in Section 4.3, all we have to

find is some time token asserting the protection schema such that its corresponding interval

satisfies the necessary temporal constraints. In ensuring (clear table38) throughout an

interval, we have to make sure that all tokens contradicting (clear table38) satisfy the
necessary temporal constraints. The universal quantification requires that we set up depen-

dency structures for every contradictory time token, not only those that appear in the time

map at the time the query is processed, but any additional contradictory tokens that are
subsequently added to the time map. The resulting data dependency structure is referred

to as an anti-protection. Figure 4.25 shows how an anti-protection might be set up during

" For each point in the total order you could just keep track of the difference between the number of actions

(preceding the point) which place objects on tabl*s3 and the number of actions (preceding the point) that

remove objects from table3I. At each point where the difference is 0 you can conclude (clear table38).

. . -. . .
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backward chaining.

Notice that in the time map of Figure 4.25 the anti-protection is OUT even though

the query will succeed. The ddnodes corresponding to anti-protections generally appear as

out-justifiers in justifications. Note also that in order to maintain this anti-protection, every

time a token contradicting (clear table38) is added to the time map a new justification

has to be added to the anti-protection ddnode. The current version of the TMM implements

anti-protec,;ons, but the routines are still very much experimental.

It is an interesting exercise to consider how this functionality might be incorporated into

overlap chaining. The form (->t (and P1 ... Pi (K (not P.+ 1)) ... (K (not Pj))) Q)

can be interpreted as saying that Q is believed wherever P1 through Pi are believed and

Pi+1 through Pi are not. Notice that this bears considerable resemblance to a ddnode
justification with in-justifiers and out-justifiers. To strengthen this connection, I'll call P1

through Pi in-types and P,+ 1 through P- out-tpes. An overlap chaining rule with out-types

will be referred to as an augmented chaining rule or ACR.

All temporal forward chaining rules potentially result in the generation of new time

tokens. In ACRs this proliferation can be extreme. Let's consider the set of tokens resulting

from an ACR. Some additional terminology should help. A generating set for an ACR is

a set of tokens: exactly one of each type in the in-types of the ACR 2°. Each generating

set designates an interval of time corresponding to the intersection of the intervals of its

component tokens. The set of all tokens of a type in the out-types of the ACR is called
the sieve set for the ACR. The motivation for the terminology is that the generating sets

provide a set of candidate intervals that the sieve set restricts or filters, thereby defining

a set of actual tokens. The sieve set can be thought of as punching holes in the intervals

provided by the generating sets. The resultant tokens are constructed from the intersection

of the union of all intervals specified by generating sets with the complement of all intervals

associated with tokens in the sieve set.

This is much easier to visualize. The example in Figure 4.26 illustrates the tokens

spawned by a specific set of initial tokens and a single ACR. By convention, we associate

a fixed set of identifiable tokens with each generating set. These consist of one token
whose endpoint is identified with the least upper bound of the points ending tokens in the

"°This treatment is admittedly a bit glib. There are a number of complications that arise in considering
universally quantified variables in ACR9s. These complications are easily dealt with and are ignored to

simplify the discussion.

.......... . - . -..... ,.... . ,,.. ' ," - . .- . .- , .
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Frame of reference: (begin taski) Scale: 1.0

tokeni (on salt-shaker table38)
II -------------- I

token2 (on pepper-mill table38)
II -------------------

taski (achieve (clear table38))
------------ I

Initial time map

(for-first-answer
* (fetch '(tt (begin taski) (end taski) (clear table38)))

(add '(plan-for taski noop)))

Controlled forward inference

Ddnode: Data type: Corresponding datum:
Ui TOKEN (time-token (on salt-shaker table38) tokeni)
n2 TOKEN (time-token (on pepper-mill table3S) token.2)
n3 TOKEN (time-token (achieve (clear table38)) taski)
n4 TCONDIT (pt< (begin tokeni) pt2)
n5 TCONDIT (pt( (end tokeni) ptl)
n6 TCONDIT (pt< (begin token2) pt2)
n7 TCONDIT (pt( (end token.2) ptl)
U8 PROP (anti-protection ptl pt2 (clear table38))
n9 PROP (plan-for taski noop)

n8 has the justifications: (((ni. n4}{n5}) (n n6}{a7)))
ng has the justifications: ({{8)

Resulting data dependencies

Figure 4.25: Dependency relations for anti-protections
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---------------------------- P1
I- ------------ I P2

----------------------------------------------- IQ
-------------- I RI

------- I R2
I -. .I Si

I------ I S2
t S3

+ S4
+ S5

------ 56

Note: Tokens generated but not currently believed ( i.e., IN)
are indicated by a 4 marking their endpoint.

Figure 4.26: Tokens resulting from (->t (and P Q) (N (not R)) S)

generating set (relative to the ordering relation on points), and one each identified with the

beginning of tokens in the sieve set. Consider what would follow from the addition of the

ACR (->t (and P Q (K (not ))) S) to a time map consisting of the tokens PI, P2, QI,

R1, and R2. The result, shown in Figure 4.26, would include the set of tokens (Si : 1 <

i < 6) of which only S1, S2, and 56 are currently IN. The current sieve set is (11.12).

There are two generating sets {PI ,Q1) and {P2.QI. with resultant token sets (1. 2.S3)

and (54. 5,S6) respectively.

ACRs are not difficult to understand functionally. Their implementation is straightfor-

ward using the techniques described in this dissertation. I believe that with a little effort

such an implementation could be made reasonably efficient. The sort of nonmonotonic

inference supported by ACRs and anti-protections will probably find considerable use in

reasoning about time.

4.7.2 Overlapping time tokens

Let's consider a robot messenger in a large factory. Suppose that this robot employs a vision

system for navigation and obstacle avoidance, and hence it requires illumination in order to

cross an open area without getting into trouble. Now let's suppose the rcbot is currently

contemplating crossing area35. There are two lights, lighti and light2, in area35, either

!:.
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Frame of reference: (begin taski) Scale: 1.0

tokenl (on lightl area35)
II -----------------------I

token2 (illuminated area35)
II I-----------------------I

token3 (on light2 area35)
II ---------------------------- I

token4 (illuminated area35)
II ----------------------- I

taskl (traverse area35)
---------------------------------- I

Figure 4.27: Handling overlapping intervals

one of which is capable of illuminating area35 sufficiently to enable the robot's successful

traversal. To be able to deduce that an area is illuminated whenever a light is on in that

area we have the following overlap chaining rule:

(->t (and (on ?appliance ?location)
(instance-of ?applianc. light))

(illuminated ?location))

The problem is that neither light is on sufficiently long to allow the robot to complete

the crossing. Figure 4.27 displays a time map describing the situation.

It would seem that the query (tt (begin taskl) (end taskl) (illuminated area35))

should succeed in the time map of Figure 4.27. Of course, it won't because there is no (sin-

gle) time token that satisfies the protection criteria. The TMM will fail in this situation to

provide the right sort of assistance.

There are a number of ways that this deficiency might be corrected. One approach is

to define the ending point of a token dynamically. I'l speak of a terminator of a token to

distinguish a dynamically chosen end point from the (unique) end point associated with

the actual time token data structure (i.e., the end slot of an object of data type TOKEN). A

token T, is said to be subordinate to a second token Tz asserting the same fact type if T2

begins before T, and the end point of T2 cannot be shown to precede the beginning of T1.

A point pt0 is said to be a terminator for a token T, if either pt0 is the end point of T,

or there exists a second token T2 such that T2 is subordinate to T, and pto is a terminator

for T2. In Figure 4.27, one terminator of token token2 would be defined to be the same as

|-. .... . •... ... . .. . .
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the end of token4. We could add some restrictions to eliminate certain other terminators

so that, for example, the end of token2 would not be a terminator for tokn2. However,

in a partially ordered time map, time tokens will not in general have unique terminators.

Processing queries would proceed as usual, except for the fact that several terminators

will have to be considered instead of just one end point. Setting up the necessary data

dependencies is a little more complicated than before, but presents no special problems.

As with the anti-protections, the issue here is the added computational cost of building

this permanently into the search routines. It's not apparent that it will be used frequently

enough to override the cost of maintaining the necessary data structures (in the case where

the set of terminators for each token is maintained) or extending the search for every query

(in the situation where the candidate terminators have to be recomputed for each query).

Again, this will require further investigation to determine if this capability represents a

critical functionality.

4.8 Summary

This chapter represents a compendium of techniques and issues involved in managing tem-

poral data bases. The basic functionality behind reasoning about partial orders and metric

constraints was addressed in terms of a set of routines for processing temporal queries.

These routines depend upon techniques for temporally indexing time tokens and determin-

ing the best estimates of point-to-point distances. Two specific methods for optimizing

these operations were discussed. The first involved caching certain point-to-point distance

estimates. The cached values were used to speed heuristic search for the best path(s) be-

tween pairs of points in the time map. A best path was defined to be a set of constraint

links leading from one point to another such that the sum of the lower (upper) bounds was
maximal (minimal) over all other such paths. The second method of optimizing temporal

queries involved preprocessing queries. This allows the system to exploit certain capabilities

of the search routines used to derive point-to-point distance estimates. In particular, these

search routines can (generally) find the best estimates between a destination point and each

member of a set of target points far quicker if all the target points are specified at once,

than if they're given individually.

The problems surrounding the treatment of defeasible predictions was addressed in

terms of a temporal reason maintenance system and methods for detecting and responding

.........................
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to changes in temporalized beliefs. A proof of correctness for a temporal data dependency

update algorithm was provided along with details of the implementation. The algorithms

for temporal reason maintenance are one of the main computational contributions of this

work, and a fair amount of space was devoted to its explication. The interplay between

resolving apparent contradictions and keeping track of the status of protections is crucial

here, and it was necessary to introduce some conventions for using the TMM which guar-

anteed that the algorithms terminate. The main restriction involved care in separating

temporal connectivity from certain sorts of inferential connectivity. It was argued that this

separation does not constitute a major inconvenience, and that in many instances it makes

it clear what's actually going on in the time map.

This chapter also dealt with the details of managing certain types of temporal forward

chaining. Both logical or overlap forward chaining and a method for pe-forming restricted

envisionment were discussed. The latter, called auto-projection, was shown to be quite

similar to controlled forward chaining, except that such rules were not able to introduce

new constraints to the existing partial order on their own initiative.

Finally, a number of deficiencies in the current TMM were discussed along with sugges-

tions about how they might be corrected, and warnings that they might involve considerable

computation.

-oO. ft..
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Chapter 5

Applications in planning

5.1 Introduction

Planning is a synthetic process. You don't begin with a plan and then prove that it is

correct. Rather, you begin with a bunch of goals that you wish to achieve, and then

you proceed to make guesses about how you might go about achieving them. The sort of

inferences involved in planning can be divided into two classes: deductive and abductive.

Deduction is used to verify that some proposed plan is likely to succeed. Abduction is

used to make guesses about how to proceed in constructing a plan. In general, you begin

with an intention: something that you are committed to making true. Once you are clear

about what you want to achieve, you set about trying to formulate a set of steps to bring

about the desired state of affairs. In the course of formulating a course of action to achieve

some desired state, a planner is likely to discover that the actions he is considering conflict

either with one another, or with the planner's expectations concerning other events. For

instance, I had thought there would be enough time to finish a proposal by 5:00 PM, but

this afternoon was the only time I could schedule an appointment with the dentist, so the

proposal will have to be delayed. The process of exploring the repercussions of various

courses of action by proposing actions and then responding to noticed conflicts is what I
will be referring to as planning in this chapter.

A task is a description of an intention. A task stipulates a process to be carried out by the

planner. In the time map, a task is represented as a time token whose corresponding interval

determines the period of time during which the process is performed. The type of the token

217
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indicates what sort of process is involved (e.g., (achieve (on block34 tablel?)). A

task has associated with it a number of constraints: constraints that specify the current

estimate of the duration of the task, an~d constraints on when the task begins and ends

(deadlines).

Some tasks are used to indicate actions that require no further elaboration given the

level of detail expected in a plan. These actions and the tasks corresponding to carrying

out such actions are referred to as primitive. Other tasks, referred to as problematic, require

further elaboration (or refinement) before they can be said to be adequately specified. The

distinction between primitive and problematic tasks is purely pragmatic. If you have a

routine for carrying out a task that is almost guaranteed to bring about some desired state

of affairs, and the steps in the routine are invariably carried out in the same way , then

that routine is a good candidate for associating with a primitive task. For example, a robot
might have a foolproof method for placing one block on another given that both blocks are

clear. In that case, (puton block34 table 17 might be considered as primitive. The task

(achieve (on block34 table17)), on the other hand, might be considered problematic

given that there are a number of methods for bringing about (on block34 table 17) each

of which is appropriate in different circumstances. You might argue that the only sorts

of tasks that should be considered primitive for a robot correspond to applying power to

motors. You can't extend your arm if you're tied up, but if you can do anything at all, then
you can probably flex the muscle in your arm. This criterion is too strict for some reasoning
tasks, and not strict enough for others. Alter all, pulsing a stepper motor can be just as
complex and unpredictable at the level of circuit interactions as planning out the day's
activities, In many cases, however, it would be exorbitantly expensive and likely a waste
of time to plan down to the level of pulsing stepper motors. As was mentioned in the first

chapter, the sort of problem solving I am interested in involves anticipating certain types of
foreseeable problems. The problems that one is likely to encounter in moving an appendage

are better handled at the time they occur, not by carefully planning things out in advance.

The distinction between primitive and problematic tasks should be based on whether or not
the detailed explication of a task is likely to msist in reliably predicting potential interations
between tasks. If the only time at which sufficient information is available for detecting such

interactions is at run time, then it is better to suppress the detail until execution time and
consider the task as primitive.

The sort of planning we will be looking at in this chapter I refer to as reductionst



CHAPTER 5. APPLICATIONS IN PLANNING 219

planning. A reductionist planner is one that breaks down (or reduces) a problematic task

into a set of steps, or subtaska, that can be considered in relative isolation. That such

reductions can result in practical plans depends upon the assumption that our knowledge of

planning can be decomposed into small self-contained units, not unlike program subroutines.

Since these units have a relatively wide scope of application, they often have to be tailored

for a specific situation. This might be done by ordering certain steps so that they don't

interfere with one another, or by carefully choosing a method for accomplishing a step

that does not introduce side effects that conflict with other tasks being considered. These

interferences and conflicts are commonly called interactions, and a good deal of effort has

gone into explicating strategies for eliminating or resolving them [Wilensky 831 [Pednault 851

[Chapman 85]. It is generally assumed that interactions between steps can be resolved
locally. By this, we simply mean that the decision process involved does not have to take

into account all of the current tasks. Later, we'll see occasions in which this assumption

breaks down in attempting to handle deadlines and resources.

A plan is simply a partially ordered set of tasks. A complete, or fully specified, plan is

one in which all unreduced steps are primitive. There is no generally agreed-upon notion

of what it means to have a "good" or even a "correct" plan. But it is reasonable to expect

that an "acceptable' plan is complete, satisfies the initial specifications (e.g., deadlines or

resource usage limitations), and has no unresolved interactions.

Many interesting planning problems can be formulated in terms of coordinating pro-

cesses. The processes may be under the control of a single agent, or they may have external
origin, including natural phenomena. Planning proceeds by hypothesizing a set of steps

that might bring about the desired state of affairs. This is in some respects similar to the

sort of inference commonly carried out in diagnosis. A diagnostician wants to formulate a

set of processes that fit with the observed facts and at the same time serve to explain how a
given phenomenon came about. Analogous to planning, explanations for two different phe-

nomena may conflict with one another. The hypothesis that a diode is shorted may explain

the high current in a circuit, but contradicts the fact the diode appears to be clipping an AC

signal. In an effort to explain the high current, the diagnostician had to actually entertain

the possibility that the diode was shorted, making assertions, projecting consequences, and

detecting and resolving possible conflicts, in order to test out the hypothesis.

Planning consists of much the same sort of process. A planner wants to formulate a set of

actions, coordinated with observed and predicted events, such that the planner's intentions



CHAPTER 5. APPLICATIONS IN PLANNING 220

are realized. Suppose that we have a task in the blocks world domain to clear a given

block block47. This would be represented in the time map using a token of type (achieve

(clear block47)). This token corresponds to saying (perhaps a bit optimistically) that

the planner will perform whatever actions are necessary in order to achieve the effect of (on

block47 table).- Not surprisingly, the planner wants to know just what actions it will be

performing. One of the rules in the data base may have the following form:

(it (and (tt (begin ?tsk) (end Utsk) (on ?y ?W)
(time-token (achieve (on ?y table)) ?xubtsk)
(pta (end ?subtak) (end ?tsk)))

(time-token (achieve (clear Wx) ?tsk))

This rule essentially says that, if there is something ?y on the block ?x throughout the

interval in which (clear ?x) is to be achieved, then one way in which it might actually have

occurred is if another task achieving (on ?y table) occurred whose end point is coincident

with the task to achieve (clear Wx. The antecedent of the rule actually constitutes a plan

for achieving (clear ?x. We started with the consequent, and we wanted to determine how

it might come to pass. The inference fits the form of Pople's abduction schema [Pople 73].

The antecedent of a rule used for making an abductive inference can be divided into things

that must be true and things that we are willing to grant for the sake of entertaining a

particular hypothesis. If everything must be true, then the rule can be used only deductively.

In the rule for clearing a block it must be true that the block already has another block on

it, but we're willing to postulate an additional task to place the offending block on the table.

If it is ever the case that the necessary conditions are no longer satisfied, then the inference

is no longer warranted. It is also possible, for one reason or another, that the antecedents

that were granted for the sake of entertaining the hypothesis are untenable. Either they lead

to unpleasant consequences, or they fail to fit in with other predictions and observations.

In either case, they can be withdrawn since there was no deductive warrant for believing

them in the first place. In the rest of this chapter we will be looking at a language for

representing plans and determining their applicability. In addition we are interested in a

procedure for making inferences about plans that allows us to notice when the necessary

condit ions for an inference are endangered by the consequences of some other hypothesis

being considered. It is with regard to this last that the role of temporal reason maintenance

in planning becomes clear.

. . . . . . . . . . . . . . . . . -
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5.2 Planning

The purpose of this chapter is to discuss the role of temporal reasoning in planning. I

want to make it clear that I will be simplifying many of the issues that ame critical to the

construction of realistic planners. In this section, 1 am primarily interested in showing

how the TMM and the temporal reason maintenance mechanism, in particular, assist in

detecting and avoiding unpleasant interactions. I will begin by discussing a simple plan

language (essentially the plan language of [Charniak 851).

A plan for achieving a given task is represented as a function of four arguments (i.e.,

(plan ?steps ?constraints ?protections ?cout-function)). The arguments are:

1. a set of individual steps that comprise the plan

2. a set of constraints on the order in which those steps are to be achieved

3. a set of protections which must be maintained if the individual steps in the plan are

to achieve their intended purpose. Each protection is a four-tuple, indicating the fact

type that is being protected, the step responsible for making it true, and the beginning

and end points of the interval over which the fact is being protected.

4. a cost function which provides some measure of how desirable a particular plan is,

relative to the other plans appropriate for a given task type

The function is declared as:

(define-function (plan PRP PROP PROP FUN))

We also define a predicate to-do (repeated here from Section 3.6), which is used to

index plans according to the type of tasks they are likely to be useful in achieving.

(def ine-predicate (to-do TOKEN PROP PRP)

The token corresponding to the task that is being worked on is mentioned in order to

make reference to the temporal context in which the task is to be achieved. Quite often

the criterion for determining whether or not a plan is applicable depends upon the time

during which it is to be carried out. Internally, the steps, constraints, and protections

[ -. .
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(to-do ?tsk (achieve (on ?x table))
(plan !<(achieve (clear x))

(puton ?x table)>h<(pt=< (end 1) (begin 2))
(pt= (end 2) (end ?tsk))
(elt (dist (begin 2) (end 2)) 2 2)>

:<(clear ?x) 1 (end 1) (end 2)>)
(lambda () *pos-tiny*)))

a. Internal format for representing plans

(to-do ?tsk (achieve (on ?x table))
(plan steps: tl (achieve (clear ?x))

t2 (puton ?x table)
constraints: (pt=< (end t1) (begin t2))

(ptx (end t2) (end ?tsk))
(elt (dint (begin t2) (end t2)) 2 2)

protections: (protect (clear ?x) tl (end t1) (end t21))

b. A "sugared' version to increase readibility

Figure 5.1: Different notations for describing a plan to place a block on the table

are represented using the list notation of DUCK (see Section 3.2.1). In order to refer to

individual tokens corresponding to the steps in a plan, we use numbers indicating the nth
token corresponding to the nth step. This makes it easy for the programs manipulating

the plans, but it makes writing and reading such plans difficult. To remedy this, the TMM

employs a macro facility that converts a "sugared' version of the plan into a suitable internal

- - form. To illustrate I will present some simple blocks world plans.

The plan to place one block on the table would be represented internally using the no-
tation shown in Figure 4.1.a. In the "sugared" version (shown in Figure 4.1.b), we allow

the user to introduce symbols to refer to the steps in the plan. One can also eliminate men-

tioning any arguments that coincide with the default (i.e., (plan !0 N<> !<> (lambda

() *pos-tiny*))).

Figures 4.2 and 4.3 show some additional plans necessary for achieving tasks in the

blocks world domain. It is also necessary to determine the effects of actions, and to provide

•- - : * -:' *. - - - 2. -''^1. '. , , ".. . . ."
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(- (to-do ?tUsk (achieve (on ?x ?y))
(plan steps: tl (achieve (clear ?x))

t2 (achieve (clear ?y))
t3 (puton fx ?y)

constraints: (pt=< (end t1) (begin t3))
(pt-< (end t2) (begin t3))
(pts (end tW) (end ?tsk))
(eli (dist (begin t3) (end t3)) 3 3)

protections: (protect (clear ?x) t1 (end ti) (end t3))
r(protect (clear ?y) t2 (end t2) (end t3))))

(instance-of ?y block))

Figure 5.2: A plan for placing one block on another

criteria for what it means for one fact type to contradict another. Some rules necessary for
solving simple blocks world problems are described in Figures 4.4 and 4.5.

In order to specify a planner we would have to provide routines for:

1. selecting the next task to work on

2. determining which plans are appropriate for a given task and then choosing from

among them

3. actually performing the plan expansion and setting up the necessary protections

4. methods for resolving confficts (ordering tasks to avoid protection violations)



CHAPTER 5. APPLICATIONS IN PLANNING 224

((- (to-do ?tsk (achieve (clear ?x))
(plan steps: ti (achieve (on ?y table))
constraints: (pt- (end t1) (end ?tsk))))

(and (instance-of ?x block)
(tt (begin ?tsk) (end ?tsk) (on ?y ?x))))

;; One way of clearing a block that has a second block on it is
;; to put the second block on the table (this assumes that each
;; block can have no more than one block sitting directly on it).

(C- (to-do ?tsk (achieve ?p)
(plan constraints: (ptu (begin ?tsk) (end ?tsk))

utility: (lambda ) 0)))
(tt (begin ?tsk) (end ?tsk) ?p))

;; If something is already true. don't bother trying to achieve it.

(to-do ?tsk (achieve (and ?p ?q))
(plan steps: tl (achieve ?p)

t2 (achieve ?q)
constraints: (pt=( (end ti) (begin ?tsk))

(pt=u (end t2) (begin ?tsk))
protections: (protect ?p tl (end ti) (end ?tsk))

(protect ?q t2 (end t2) (end ?tsk))))

;; To achieve the conjunction of ?p and ?q achieve each
;; separately, and then make sure that they continue to be
;; true at least until the end of the conjunctive task.

Figure 5.3: Plans for clearing a block, ignoring a task whose purpose is already achieved,

and achieving a conjunction of facts

(<- (contradicts (on ?x ?y) (on ?z ?y))

(thnot (:- ?x ?z)))

(contradicts (on ?x ?y) (clear ?y))

(C- (contradicts (and ?p ?q) ?r)
(or (contradicts ?p ?r)

(contradicts ?q ?r)))

Figure 5.4: Blocks world contradiction criteria

.D .
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(pcause t (achieve ?p) ?p)

(pcause (and (thnot (: ?y ?z))
(on ?x ?y))

(puton ?x ?z)
(not (on ?x ?y)))

(pcause (and (instance-of ?y block)
(thnot (:- ?y ?z))
(on ?x ?y))

(puton ?x ?z)
(clear ?y))

(pcause t (puton ?x ?y) (on ?x ?y))

Figure 5.5: Capturing the effects of actions in the blocks world

time the form is evaluated. In such a case, the support for the current answer was said to

be augmented. In the form (answer-support (a aupport.predications) code), the = indi-

cates that assertions occurring in code are to depend only upon the support-predications. In

this case, the support in the current answer is overridden within the scope of the answer-

support. In the code fragment in Figure 4.6, I want to keep the variable bindings from the
current answer but substitute a new set of support predications. The reason is that I want

to be precise in annotating protection failures. If I allowed the tokens in the plan to depend

upon the current answer established during plan choice, then if the plan choice criterion

is for any reason undermined, all of the tasks in the expansion will become OUT, and all
of their expansions in turn, resulting in a virtual barrage of protection failures. Instead, 1

will show how to set up the dependencies in such a way that makes it easy to to pinpoint

and respond to undesirable interactions in a given set of circumstances. Also, recall from
Section 3.6 that the macro abductive-support provides the justifications for abductive

premises asserted in the course of actualizing an abductive answer. Note that the tokens
corresponding to the actualized steps of the plan are gathered in the variable step-tokens.

The routines in both code-to.add-cont raints and code.to-add-prerequiite-predication must

refer to these tokens. In order to do so, these routines perform a bit of straightforward

parsing and substitution not shown in Figure 4.6.

We want to maintain a handle on plans that have been expanded in the time map, in

" .,
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(let CANS (best-plan-answer 0) FLONUX (best-plan-cost *pos-inI.))
(for-first-answer (fetch (and (instance-of Utsk task)

(time-token ?task-type ?tsk)
(tbziot (or (plan-chosen-for ?tsk)

(primitive ?tsk)))))
(for-each-answer (fetch '(to-do ?Usk ?task-type

(plan ?steps
?constraints
?protections

0 ?cost-funct ion)))
(cond (((evaluate ?cost-function) best-plan-cost)

(:best-plan-cost (evaluate ?cout-function))
::best-plan-answer ansi))))

(and best-plan-answer
(add '(plan-chosen-f or ?tsk))
(let ((st TOKEN) (step-tokens M)
(abductive-support, (# '(plan-chosen-f or ?tsk))
(bind CANS (ansi best-plan-answer))

(add '(applicable-reduction ?tsk))
(answer-support (z '(plan-chosen-for Utsk))

(for-each-answer (fetch (member ?step ?steps))
(add '(and (time-token ?step ?step-token)

(instance-of ?step-token task)))
C:step-tokens (cons ?step-token step-tokens)))

(for-each-answer (fetch (member ?constraint ?constraints))
code-to-add-cone trastt)

(for-each-answer
(fetch *(and (member !<?f act-type ?step fbegin ?end>

?protections)
(tt ?begin ?end ?f act-type)))

codc-ao-add-prerequaaseprdcaton)))))))

Figure 5.6: Code fragment for task expausion
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case the plan has to be withdrawn. The predicate plan-chosen-for is used to erase a plan

should it at some point prove to be inappropriate. All tokens and constraints are made to

depend upon plan-chosen-for predications.

(define-predicate (plan-chosen-for TOKEN))

5.3 Monitoring planning assumptions

There are three types of protections that are set up in the course of planning. I refer to them

as projection-assumptions, prerequisite-.aumptions, and reducton.aseumptions. The first

of these is carried out automatically by the time map in applying pcause rules. Projection-

assumptions determine whether or not a given effect of an action continues to be believed as

the time map changes over the course of planning. Since the planner is not responsible for

managing such assumptions, we won't concern ourselves further with them. Prerequisite-

assumptions are mentioned explicitly in the individual plans. The prerequisite task is set

up solely for the purpose of establishing certain effects that must persist over a specified

interval of time. If the effect is for some reason prevented from persisting long enough, then

the prerequisite is no longer doing its job and the plan which gave rise to it is not likely to

succeed. We generally want to avoid protection failures involving prerequisite-assumptions

if at all possible. The predicate prerequisite is used to keep track of such assumptions:

(define-predicate (prerequisite TOKEN PROP))

In Figure 4.6, the code-to-add-prerequiuite-predications sets up predications of the form

(prerequisite tokl (protect fact-type tok2 (begin tok2) (end tok))), where tokl cor-

responds to the task being expanded, tok2 to the task responsible for achieving the prereq-

uisite fact, and tok3 to the task requiring the prerequsite fact being true. When the token

corresponding to the task reponsible for the prerequisite fact being true is added to the

time map, auto-projection rules see to it that the appropriate effects are added as well. The

prerequisite predications will depend upon the prerequisite fact persisting throughout the

required interval due to the tt conjunct in the fetch for the for-each-answer surrounding

code-to-add-prerequiite-predication.

As much as we would like to avoid undermining prerequisite-assumptions, it is often

useful to be able to notice when, by committing to various orderings between tasks, we
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have placed ourselves in a position where a prerequisite task will fail to achieve its intended

purpose. For instance, I might decide to wear a clean shirt this morning so that I will be

suitably dressed for an important meeting in the evening. The clean shirt is believed to be
a prerequisite for arriving at the meeting properly attired. Suppose that I remember that

I have promised to piay volleyball during lunch, an activity that is likely to soil the shirt.
I may want to modify my plan for preparing for the evening meeting (e.g., bring along a

change of clothes), but I am probably not likely to dismiss playing volleyball out of hand.

Protections involving reduction-assumptions arise in the process of selecting an appro-

priate plan for carrying out a given task. For instance, the following plan for clearing a

block is appropriate only if the block is not already clear.

(<- (to-do ?tsk (achieve (clear ?x))
(plan steps: tl (achieve (on ?y table))
constraints: (pt= (end ti) (end ?tsk))))

(and (instance-of ?x block)
(tt (begin ?tsk) (end ?tsk) (on ?y ?x))))

The reduction-assumption is simply that it continues to be the case that some block
is resting on the block to be cleared. The protection is set up by the TMM in the course

of backward chaining. If we assert something in the context of the resulting answer, then

the assertion will be dependent upon the protection continuing to be satisfied. To monitor

reduction-assumptions we introduce the predicate applicable-reduction:

(define-predicate (applicable-reduction TOKEN))

Using the predicates prerequisite and applicable-reduction, and the TMM change.

driven-interrupt facility, the planner can detect when a plan becomes threatened and

use the information about protection failures to direct the debugging process. The sim-

plest way of going about this might involve defining a pair of functions recover-from-

prerequisite-failure and recover-fro-plan-applicability-failure and a pair of

if-erased demons:

(if-erased (prerequisite task ?purpose)
(recover-from-prerequisite-failure ?tsk ?purpose))

(if-erased (applicable-reduction ?tsk)
(recover-from-plan-applicability-failure ?tsk))

S....
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Time map depicting potential violation:
tokl P

tok2 .aometaak.whose-reduction-depnds-upon-P
I ----------- I

tok3 (not P)
I------------------------------------------ >

Scheduling constraints:
(or (pt< (begin tok3) (begin tokl))

(pt< (end tok2) (begin tok3)))

Figure 5.7: A potential protection violation and the scheduling constraints generated by

the TMM to avoid it.

Obviously, the definition of these functions will be quite complicated. I won't be ad-

dressing the general problem of recovering from planning errors, but the interested reader

is referred to [Pednault 851, [Chapman 851, and [Simmons 831.

It is also important for the TMM to provide information about potential problems.

Such potential problems arise when a reduction or prerequisite-assumption depends upon

P being true throughout an interval, and an action is entered into the time map with

effect (not P) such that it is possible that the effect can violate the underlying protection.

Potential problems also arise in the event that the planner sets up a protection in a time

map that already contains effects that would serve to violate the protection. The time map

assists in eliminating such potential violations by generating what are called echeduling-

constraints. Generally, the TMM generates disjunctions of scheduling constraints such as

those shown in Figure 4.7. It is the planner's responsibility to decide whether the action

should precede the token currently used in satisfying the protection or whether the action

should succeed the protection interval. The TMM just calls a user-defined function by the

name of process-scheduling-constraints which takes a single argument consisting of a

conjunct of disjunctions of scheduling constraints of the form shown in Figure 4.7.

It's not always possible to satisfy a set of scheduling constraints. If there is no way

to satisfy the scheduling constraints, then it must be the case that there is some protec-

tion violation. The protection violation will involve either a prerequisite-assumption or a

reduction-assumption. To simplify things, let's assume that the planner is successful in

.................... "- ______
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I A

A II

B I I 
II c I II

I _ _ II___ I I

initial conditions: (on A B) (on B table) (on C table) (clear A) (clear C)
goal: (achieve (and (on A B) (on B C)))

Figure 5.8: The "creative-destruction problem

avoiding protection violations involving prerequisite-assumptions. When a failure involv-

ing a reduction-assumption occurs, the planner has basically three options. The simplest

solution is often just trying another plan. Of course, this is an option only if there are

alternative reductions (plans) that it can try. The second option involves trying another

way of ordering the tasks, and the third option requires retracting some other plan in an

attempt to eliminate the offending action that gave rise to the failure in the first place.

To illustrate, let's consider a popular blocks world problem. The initial situation and

goal are depicted in Figure 4.8. The objective is to devise a sequence of primitive puton

actions that will serve to transform the initial situation into one in which the goal (and

(on A B) (on B C)) is satisfied. This problem is a variation on what has been called the

"creative-destruction" problem [Charniak 851. Its solution requires undoing something (in

this case (on A B)) that was true in the initial situation, and must be true in the final

situation, in order to satisfy some intermediate goal ((on B C))1. To set up the goal and

initial situation we assert:

(time-token (clear A) clearl)

'The creative-destruction is not to be confused with another problem called Sussman's anomaly
fSussman 751. Sussman's anomaly is superficially similar to the creative-destruction problem; the goal
is the same, but the initial situation consists of (as C A), (ea A table), (on 3 table), (clear C), and
(clear B). If the planner chooses to put I on C first, it will be forced to revere this action in order to

get A on 3. Avoiding this sort of unnecesary work in general requires a certain amount of sophistication

(see lChapman 851 for an interesting analysis).

........................................................... - .................... -' --.
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(time-token (clear C) clear2)
(time-token (on A B) onl)
(time-token (on B table) on2)
(time-token (on C table) on3)
(pt< (begin clearl) *now*)
(pt< (begin clear2) *now*)
(pt< (begin onl) *nov*)
(pt< (begin on2) *now*)
(pt< (begin on3) *nov*)
(time-token (achieve (and (on A B) (on B C))) stack24)
(instance-of stack24 task)
(pt< *nov* (begin stack24))

Executing the code fragment in Figure 4.6 will result in expanding the task corre-

sponding to stack24, since stack24 is the only task in the data base. The expansion

of stack24 results in two additional tokens (corresponding to the tasks (achieve (on A

B)) and (achieve (on B C)), and the addition of two prerequisite-assumptions. One

prerequisite-assumption is valid just in case one effect of the (achieve (on A B)) task,

that A is on B, is true from the end of the task at least until the end of stack24. The other

prerequisite-assumption is similar, and is associated with the task of achieving B on C. Now

let's suppose we execute the code fragment in Figure 4.6, and this time it expands the task

corresponding to (achieve (on A B)). The planner will use the following plan repeated

here from Figure 4.3:

(<- (to-do ?tsk (achieve ?p)
(plan constraints: (elt (distance (begin ?tsk) (end ?tsk)) 0 0)

utility: (lambda () 0)))
(tt (begin ?tsk) (end ?tsk) ?p))

We are assuming that the robot controlled by our planner can only lift one block at a
time, and so it may seem obvious to the reader that that this is the wrong plan to choose.

The reason, however, that it is obvious to us, stems from the fact that we have thought

ahead far enough to realize that the robot will have to remove A from B in order to carry

out the (achieve (on B C)) task. The only way our simple planner can think ahead

is by actually expanding out its tasks and detecting possible problems arising from prior

commitments.

To this end, we expand the only remaining task, that corresponding to (achieve (on B

C)). In this case, there is only one plan available: the plan shown in Figure 4.2. Notice that

one prerequisite of this plan is (clear B). Notice also, that we have two protections that

depend upon (on A B), and that (clear B) and (on A B) contradict one another. One

S'
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protection resulted from the prerequisite for the (achieve (and (on A B) (on B C))

task, and the other protection is associated with the reduction-assumption generated for

the plan for achieving (on A B) (i.e., the plan of doing nothing and taking advantage of the

fact that (on A B) is already true in the world. There is no alternative plan for achieving

the conjunction of (on A B) and (on B C). There is, however, an alternative plan for

achieving (on A B). The expansion of the (achieve (on B C)) task does not directly

result in a protection failure. What it does result in is a set of scheduling constraints that

must be satisfied if the planner is to avoid protection failures. In the current situation,

there is no way to satisfy the scheduling constraints generated by the TMM. To see why,

let's look at the situation in a little more detail.

A time map depicting our situation is shown in Figure 4.9. To understand what's going

on, we have to be clear about how the TMM sets up protections (or passumptions (se

Section 4.3.2)), and what it does when it detects a possible protection failure. First, let's

consider what the relevant protections are. The prerequisite-condition:

(prerequisite TOKEN2 (protect (on A B) TOKEN3 (end TOKEN3) (end stack24)))

depends upon the passume predication:

* (passume (on A B) (begin TOKENS) (end stack24))

The reduction-assumption:

(applicable-reduction TOKEN3)

depends upon the passume predication:

(passume (on A B) (begin oni) (end TOKENS)

When the token OXEN10 is generated as a result of expanding TOKU (hi is accomplished

by the rules in Figure 4.5), the TMM generates the following conJUnction in an attempt to

help the calling program avoid a protection failure:

(and (or (pt< (begin TOKENlO) (begin TOKENS))
(pt< (end stack24) (begin TOKENIO))

(or (pt( (begin TOKENIO) (begin oni)
(pt-C (end TOKEN3) (begin TOKENIO)

[*.-".-'

. ." . -
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Frame of reference: *now* Scale 0.3

clear! (clear A)
< ---- -II. . . . ..------------------------------------------ >
clear2 (clear C)
<......II---------------------------------------------
on1 (on A B)

II -------------------------------------------
stack24 (achieve (and (on A B) (on B C)))

------------ I
TOKEN2 (and (on A B) (on B C))

II --------------------------
TOKEN3 (achieve (on A B))

TOKEN5 (on A B)
II------ ------------------

TOKEN4 (achieve (on B C))

TOKEN6 (on B C)
----------------------------- >

TOKEN? (achieve (clear C))
I-I

TOKEN11 (clear C)
II- -----------------------------

TOKEN8 (achieve (clear B))

TOKENIO (clear B)
--------------------------------- I

TOKEN9 (puton B C)"_- I-I
TOKEN12 (not (on B table))

------------------------------ I

Note: This time map was not directly generated by the rules presented in this
chapter. To make the display clearer I have added some additional constraints that
don't change the problem, but make it easier to tell what's going on.

Figure 5.9: Time map after expanding TOKEN2, TOKEN3, TOKEN4, and stack24, but before

adding any scheduling constraints.
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Unfortunately, since we also know that:

(and (pt- (begin TOKEN5) (end TOKEN3))
(pt< (begin onl) (begin TOKENIO))
(pts< (begin TOKENIO) (end stack2)))

there is no way to satisfy the scheduling constraints. What we do instead is try to satisfy

those constraints that ensure that there are no protection failures involving prerequisite-

assumptions. In this case, we have to satisfy:

(or (pt< (begin TOKEN10) (begin TOKEN5))
(pt( (end stack24) (begin TOKENIO)))

which can be done in only one way by adding (pt< (begin TOKEN10) (begin TOKIEN5)).

Adding this constraint will generate a protection failure that will result in (applicable-

reduction TOKEN3) becoming OUT. This, in turn, will result in firing one of the if -
erased demons defined on page 228, thereby calling the function recover-fron-plan-

applicability-failure with the single argument TOKEN3. In general, this function might

need to perform an arbitrary amount of computation in order to decide how to resolve
the difficulty, but let's just assume that the planner decides to replan the (achieve (on A

B)) task. We first have to get rid of the old plan by erasing (plan-chosen-lor TOKEN3).
In this case the only assertion associated with the plan (the plan to do nothing) is the

constraint that the task takes no time (its duration is 0). Now, when we expand TOKEN3

the only applicable plan is that shown in Figure 6.2.

After this, the rest of the expansions will occur without a problem. The final plan
will consist of the sequence of primitive actions ((puton A table) (puton B C) (patn A

B)).

It is fairly simple to construct a planner using the TMM that performs with the power
of Tate's NONLIN [Tate 77] or Vere's DEVISER [Vere 83]. To do so it is necessary to

keep track of all reduction and ordering decisions in order to guide backtracking. The
temporal reason maintenance system of the TMM also makes it quite simple to implement

dependency-directed methods for debugging plans [Daniel 83) [Vere 86) [Wilkins 86). The

auto-projection facility of the TMM has not as yet been fully exploited, but methods for
performing conditional projection should simplify reasoning about the physics of a domain.

Such methods also provide a means for recognizing when rertain effects combine to give

rise to new tasks. For instance, suppose we have a rule that says, whenever the doors to

................... ................
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one of the welding bays have to remain open during an interval in which welding is being

performed, then you have a task to turn on a powerful exhaust fan to prevent the fumes
from escaping into other parts of the factory. It is convenient to represent this piece of

knowledge as a separate rule, rather than attaching the information to plans which perform

welding, or might have reason to open the doors to the welding bay. In Chapter 3, I gave

some other examples in which this sort of reasoning might come in handy.

The TMM also provides a number of utilities which have proved useful in implementing

the FORBIN planner [Miller 85a] and I'll take a little time to describe them here.

At some point during expansion, tasks and events are treated as primitive. As I men-

tioned in the introduction, the criterion for determining what is primitive and what is not

is purely pragmatic. The criterion may depend upon what other tasks are actively being

pursued or on how much time the planner actually has to think about what to do. It is nec-

essary in reasoning about tasks with deadlines to assign an estimate of how long primitive

tasks are likely to take. If, however, the duration of primitive tasks is the only way we have

of determining how long nonprimitive tasks will take, then we are likely to run into some

serious problems. The reason is simply that the planner is not likely to recognize a deadline
failure until all of the tasks are expanded down to primitives. The way to get around this

is quite simple. Each task type provides an estimate of how long it is likely to take. This

estimate is made, assuming that all of the steps in the plan that will ultimately be used to

carry out the task are executed without interruption. Of course, in the complete plan the

steps are quite likely to be spliced together with tasks for carrying out other plans. The

time actually spent in service to a given task will be spread out over time. The estimated

duration of a task is added to the time map at the time it is first entered into the time map.
Later, when it is expanded, this estimate is removed. The duration of the task can then

be determined as the sum of the duration of the tasks in its expansion. This technique is a
special instance of what is referred to as hiera rchi cal planning.

Hierarchical planning is a somewhat refined version of what we have been calling reduc-

tionist planning. A reductionist planner is one that breaks down (or reduces) a complex

task into a set of steps, or subtasks, that can be considered in relative isolation. Hierarchical

planning [Sacerdoti 741 deals with certain strategies for performing the reductions in such

a way as; to avoid unnecessary search. The space of possible plans for achieving even the
simplest sort of task is quite large. The search itself consists of making and rescinding de-

cisions concerning task ordering, the method of reducing an individual task, and the choice
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of instruments or resources used in carrying out a particular task. If the reduction process

is not skillfully directed, there is a significant chance that the program will not terminate

in a reasonable amount of time.

Hierarchical planning attempts to direct the reduction process by decomposing the prob-

lem in such a way that decisions made early in planning do not preclude options for achiev-
ing tasks yet to be considered. In effect, this means either the early decisions don't really

matter, or the planner has the necessary information to anticipate and sidestep possible

problems. Providing the sort of direction needed to avoid reversing decisions has turned
out to be quite difficult in practice. Special purpose strategies have been proposed, how-

ever, to significantly reduce the search. One such strategy is employed by the FORBIN

planner to avoid reduction and ordering decisions that might lead to deadline failures. The

technique involves using compiled information to anticipate scheduling problems (this con-
stitutes a limited form of lookahead). The library of methods for reducing tasks contains

precompiled estimates of the resources (in particular the amount of time) each task in a
reduction is expected to use. In performing reductions or considering which of several or-

dering constraints to add in resolving an interaction, the planner uses these estimates to

make decisions that are not likely to require reversal. The estimates of the resource usage
for a given task are discarded after that task is reduced. A more detailed estimate is then
available from the estimates of the resource use of all the subtasks. This technique has been

especially useful in avoiding deadline failures and it promises to generalize to other sorts of

resource-allocation problems.

The TMM also provides a simple method for managing a resource such as a set of

machine tools. This method essentially linearizes all tasks which propose to employ a given

machine. The predicate for invoking this utility behaves similarly to the true-throughout

tt predicate at query time. The predicate definition is:

(define-predicate (reserved POINT POINT PROP))

At query time, a conjunct of the form (reserved ?begin ?end ?machine) is treated by
the backward chaining machinery as (tt ?begin ?end (production-status ?machine

free)). If an assertion occurs in the context of an answer in which (reserved ?begin
?end ?machine) succeeded, then the TMM will constrain tegin to follow whatever token

asserting (production-status ?machine free) the time map used in making the query

succeed. This is the same as it would do for a tt conjunct. In addition, the TMM will assert
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Frame of reference: *ref* Scale: 2.0

running35 (operational-status lathe35 running)
I I-----------------------------------------------------------)
freel (production-status lathe35 free)
II------------------....I

makel (manufacture widget)
I ------------- I

inusel (production-status lathe35 mnuse)
I ------------ I

free2 (production-status lathe35 free)
I11 ........-------------------- %

make2 (manufacture gizmo)
I------------------------------- III

Figure 5.10: Initial situation for demonstrating the TMM resource handling utility

(production-status ?machine muse) throughout the interval Thegin to ?end, and also

constrain ?end to precede any interval also requiring the use of ?machine that is currently
unordered with respect to ?end. A simple example will make this clear.

Consider the time map depicted in Figure 4.10. There are two tasks shown: one sakel

to manufacture a widget, and a second uake2 to manufacture a gizmo. The (manufacture

widget) task has presumably already been expanded. The time map indicates that lathe35

is reserved throughout the interval associated with makel. There are two intervals in which

lathe35 is free for use by another task: just before makel and just after. Now, let's

suppose that we want to expand the (manufacture gizzo) task, mLke2. This task has

to be completed before the current reference point *refs. In Figure 4.10, the duration of

make2 is constrained only by the deadline *re*. Obviously, if we want to reserve the lathe

for some period of time, we have to be able to specify that amount of time in the query.

Figure 4.12 shows a rule for establishing the applicability of a simple manufacturing plan.

Consider the applicability criteria itself. Notice that the rule determines a different pair

of bounds, ?low-estimate and high-estimate, depending upon whether the product-
type is widget or gizmo, and whether the machine chosen for the job is a lathe or a milling

machine. The conjunct (A (Wit (distance (begin ?tok) (end ?tok)) ?low-estimate
*pos- i ) enforces the appropriate lower bound during the query. This means that the

conjunct (reserved (begin ?tok) (end ?tok) ?machmne) will succeed only if it can find

............................................. •, , ...... ..
.t. "* .* • 'o"" • " "°- " " - - - - - - - -- - -" - -".. . .o".. . . . . .,.. . ,.. . . . .
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Frame of ref erence: *ref* Scale: 2. 0

runaing35 (operational-status lathe35 running)
I I------------------------------------ ------------------ >
freel (production-status lathe35 fre.)
I I
makel (manufacture widget)

------------- I
inusel (production-status lathe35 inuse)

------------- I
free2 (production-status lathe35 ire.)

1-I - - - - - - - - -- - ----
mak*2 (manufacture gizmo)

-- I ----------- _
inus*2 (production-status lathe35 inuse)

-------- ------------I
iree3 (production-status lathe35 free)

------------ I-
setupi (setup lathe35 gizmo)
I - - - - - -II - III

loadi (load lathe35 (blank gizmo))

rul (run lathe35)
I--------------I

Figure 5. 11: Time map after plan expansion involving resource query
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(-(to-do ?tok (manufacture ?product-type)
(plan

steps: ti (setup ?machine 'product-type)
t2 (load ?machin* (blank ?prodnct-type))
t3 (ruzi ?machinae)

constraints: (pt- (end ?tok) (end tW)
(pt=< (begin ?tok) (begin tM)
(pt< (end t1) (begin t3)
(pt( (end t2) (begin t3))

estimated-duration: (elt (distance (begin ?tok) (end ?tok))
?low-estimate ?high-estimate)

protections: (protect (installed ?machine (fixture ?product-type))
ti (end t3)

(k (or (and (a ?product-type widget)
(or (and (inst ?machine lathe)

(=(turning-radius ?machine) 16)
(:?low-estimate 5) (:= ?high-estimate 6)

(and (inst ?machine milling-machine)
(attachment ?machine rotary-table)
(:?low-estimate 22) (:= ?high-estimate 25))))

(and (a ?product-type gizmo)
(inst ?machine lathe)
0- (turning-radius ?machine) 12)
(or (and 0z (turning-radius; ?machine) 16)

(:?low-ostimate 6) (:= ?high-estimate 7)
(:a ?low-estimate 7) (:u Thigh-estimate 8)

(A (eit (distance (begin ?tok) (end ?tok)) ?low-estimate *pos-infe))
(reserved (begin ?tok) (end ?tok) ?machine)
(tt (begin ?tok) (end ?tok)

(operational-status ?machine in-service))))

Figure 5.12: Plan for expanding tasks for manufacturing widgets and gizmos
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an interval at least ?low-estimate in duration such that it is true throughout the interval

that (product ion-status ?machine free) and make2 can be constrained to fall within

that interval. In the time map in Figure 4.10, there is only one machine suitable for

the (manufacture gizmo) task, namely lathe35. Given the length of time required for

manufacturing a gizmo with a lathe, and the deadlines imposed on the make2 task, the only

time it is possible to use the plan shown in Figure 4.12 is before the makel task. The result

of expanding the plan is shown in Figure 4.11. Notice that the make2 token is constrained
to endure between 6 and 7 units. This is due estimated-duration constraint found in the

plan schema. The time map in Figure 4.11 guarantees that lathe35 will be available for

use by make2.

A 5.4 Recognizing opportunities to improve plans

In this section, I want to describe how the methods for dealing with alternatives presented

in Section 3.8 fit in with the techniques of this chapter. The example to be used in this

section is one that you should be quite familiar with by now: manufacturing a bunch of

widgets and gizmos. The only difference from the problems we looked at towards the end

of Section 4.3 is that the planner will be considering more than one method for achieving

certain manufacturing tasks. To give the reader a better idea of what's going on, I will

be depicting the time maps generated during planning in a manner that captures the in-

formation content, but belies the conciseness of the underlying representations. Each time

map display corresponds to a particular admissible choice assignment. In addition, I will

use simplified versions of system generated time maps to isolate just those aspects of the

situation that are important for understanding the example.

The problem presented to the planner is as follows. There are four tasks, two to make

widgets and two to make gizmos. Widgets are rather large and unwieldy objects. You can

manufacture a widget on a lathe with a turning radius of at least 16 inches or on a milling

machine with a rotary table. Unfortunately, it takes forever to make a widget on a milling

* machine. A special fixture for use on a lathe avoids many of the tedious operations that

have to be carried out manually on the milling machine. Still, it is convenient to have

the milling machine available as an alternative method for producing widgets. Gizmos are

somewhat more delicate, but they require the thread cutting capability of a lathe. You can

manufacture a gizmo on any lathe with a turning radius of at least 12 inches. This is a
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(-(to-do ?tok (manufacture ?product-type)
(plan

steps: ti (if ?installation-step-f lag
(setup ?machine ?product-type))

t2 (load ?machine (blank ?product-type))
t3 (run ?machine)

constraints: (pt= (end ?tok) (end tW)
(pt-< (begin ?tok) (begin t3)
(pt( (end t1) (begin t3)
(pt< (end t2) (begin t3)

estimated-duration: (elt (distance (begin ?tok) (end ?tok))
?low-estiuiate ?higb-estimate)

protections: (protect (installed ?machine (fixture ?product-type))
ti (end t3)

(k (or (and (= ?product-type widget)
(or (and (inst ?machine lathe)

(>- (turning-radius ?machine) 16)
(:z ?low-estimat. 5) (:z Thigh-estimate 6))

(and (inst ?machine milling-machine)
(attachment ?machine rotary-table)

(u?low-estimate 22) (:= ?kigh-estimate 25)
(and (z ?product-type gizmo)

(inst ?machine lathe)
(>z (turning-radius ?machine) 12)
(or (and (>a (turning-radius ?machine) 16)

(u?low-estimate 6) (:= ?high-estimate 7)
(:?low-estimate 7) (:= ?high-estimate 8)

(A (elt (distance (begin ?tok) (end ?tok)) ?lov-estizate *pos-inf*))
(reserved (begin ?tok) (end ?tok) ?machine)

0 (or (tt (begin ?tok) (end ?tok)
(installed ?machine (fixture ?product-type))

(=?installation-step-f lag true))
(tt (begin ?tok) (end ?tok)

(operational-status ?machine in-service)))

Figure 5.13: Plan for expanding tasks for manufacturing widgets and gizmos
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----- --------------- ----------------- ----------------
I I lathel I lathe2 I mlll

---------------------- ----------------- ---------------- I
I widgets I NA 1 [5.6] 1 [22.25] 1
I ---------- I --------------- I--------------- I--------------I
I gizmos I [7.8] 1 [6.7] 1 NA
---------------------- ----------------- ---------------- I

Figure 5.14: Approximate times (in minutes) to complete widget and gizmo manufacturing

tasks on the three available machines

(-(to-do ?tsk (setup ?machine ?product-type)
(plan constraints: (cit (distance (begin ?tok) (end ?tok)) 0 0))

(tt (end ?tok) (end ?tok)
(installed ?machine (fixture ?product-type))))

(-(to-do ?tsk (setup ?machine ?product-type)
(plan steps: ti (remove ?machine (fixture ?type)'#

t2 (store (fixture ?type) tool-room)
t3 (install ?machine (fixture ?product-type))

constraints: (pt- (end ?tok) (end t3)
(cit (distance (begin ?tok) (end ?tok)) 4 5)

(or (k (tt (begin ?tok) (end ?tok) (installed ?machine (fixture ?type)))
(thnot (:z ?product-type ?typo)))

(tt (begin ?tok) (end ?tok) (installed ?machine nothing))))

Figure 5.15: Plans for expanding the task to install the necessary fixtures for manufacturing

widgets and gizmos
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variation on the plan of Figure 4.12, but I'm going to complicate things somewhat by adding

a criterion for an optional part of the plan schema. Essentially, what we want to do is to use

a little foresight when selecting a time and method for carrying out plans to achieve goals.

I will assume that one of the most expensive operations in carrying out widget and gizmo

manufacturing tasks on a lathe involves installing widget and gizmo fixtures. This means

that at the time we are considering when to perform the task, we might as well also take into

account what sort of things might serve to expedite the task. If we can find an interval such

that there's a lathe available with the right fixture already installed, then it would be wise

to use that interval in most situations. Figure 4.13 shows a plan schema with associated

applicability criteria that results in a different expansion depending on whether or not the

appropriate fixture is installed in the machine chosen for the task. In the factory we will be

considering, there are two lathes and one milling machine millI. The first lathe lathel has

a 12 inch turning radius and the second lathe2 has a 16 inch turning radius. Figure 4.14

shows the approximate times required to complete widget and gizmo manufacturing tasks

using these machines according to the constraints set up in the plan of Figure 4.13. I will

assume that the utility function (not shown) will take into account the machine chosen for
the job, the type of product being made, and whether or not the correct fixture is already

installed.

The only other plans I will be referring to involve the task for setting up a machine with

the proper fixture. These plans are shown in Figure 4.15. The first of these plans is a noop.

The reduction-assumption for this plan is that the appropriate fixture is already installed
in the machine. The second plan shown in Figure 4.15 has the reduction-assumption that

some fixture other than the one needed is installed, thereby requiring its removal and the

installation of the correct fixture. This reduction-assumption ensures that that this plan

will be applicable only in a situation where it is necessary. It may be the case that at

the time the setup task is expanded, there is no indication that the correct fixture will

be installed over the required interval. Subsequent expansions, however, may result in the

correct fixture being installed. The reduction-assumption enables the planner to recognize

such fortuitous situations and re-expand the setup task to take advantage.

In the initial situation, neither of two lathes has any fixture installed. The first task

gizmol is expanded and the planner decides to use lathe1. Since there is no fixture installed

in lathel, the expansion includes a step to install the widget fixture.

Next, the planner decides to work on the first of the two widget manufacturing tasks,

-. " . .
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(let ((ist-of -options 0))
(f or-each-answer

(fetch '(and (to-do ?task ?type ?plan)
(viable-alternative ?task ?plan)))

(ulist-of-options (cons (option '(use ?task ?plan))
list-of-options))

(answer-support (4 '(use ?task ?plan))
code-for-czpanding-pLansn-the-tsme-mop))

(mutual ly-exc lusive list-of -options))

Figure 5.16: Code fragment for expanding alternative plans for a task

---------------------------- ------------ ------------I
I I PWDi PWD2 I PVD3 I P0D4 I

---------------- ------------ ------------ ------------I
Igizuol I lathel I lathel I lathel I lathel I
------ ------------------ ------------ ------------ I
Iwidgeti lathe2 I illi lathe2 I illi
------ ------------------ ------------ ------------I
Igizzo2 I lathe2 I lathe2 I lathel I lathel I
------ ------------------ ------------ ------------I

Figure 5.17: Machines chosen for the tasks gizuol, widgeti, and gizzo2 in four separate

partial world decriptions
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Frame of reference: *ref* Scale: 1.0

installedi1 (installed lathel nothing)
I I--- I
installed2 (installed lath@2 nothing)

gizmol (manufacture gizmo) ((using lathel>>

setupi (setup lathel gizmo)

installed3 (installed lathel (fixture gizmo))
----------------------------------- ------ -------- %

widgeti (manufacture widget) ((Cusing lathe2>>

setup2 (setup lathe2 widget)

installed4 (installed lathe2 (fixture widget))

gizmo2 (manufacture gizmo) ((Cusing lathe2))

setup,3 (setup lath92 gizmo)

installedS (installed lath@2 (fixture gizmo))
-----------------------------------------

Figure 5.18: Time map depicting the situation in PI0DI
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Frame of reference: *refo Scale: 1.0

installedi (installed lathel nothing)

installed2 (installed lathe2 nothing)

gizuol (manufacture gizmo) <(using lathel>>

setupi (setup lathel gizmo)

installed3 (installed lathel (fixture gizmo))
I-------------- ------- ----------------------

widgeti (manufacture widget) ((cusing zilli))
--------------------- I

gizzo2 (manufacture gizmo) ((Cusing lathe2),

setup3 (setup lathe2 gizmo)
1-1

installedS (installed lathel (f ixture gizmo))
- ------------- I--------------------------------------->

Figure 5.19: Time map depicting the situation in PWD2
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Frame of reference: *ref* Scale: 1.0

installedi (installed lathe! nothing)
11 ----- I
installed2 (installed lathe2 nothing)
1 --- I

gizmoi (manufacture gizmo) <(using lathel>>

setup! (setup lathel gizmo)
1-1

installed3 (installed lathel (fixture gizmo))
11------------------------------------------------------1

widgeti (manufacture widget) ((using lathe2>>

setup2 (setup lathe2 widget)

installed4 (installed lathe2 (fixture widget))
-------- I-------------------------------------------I

gizmo2 (manufacture gizmo) ((using lathei>)

Figure 5.20: Time map depicting the situation in PVD3

Frame of reference: ore-f Scale: 1.0

installed! (installed lathe! nothing)

installed2 (installed lathe2 nothing)
I I-------------------- ---------------------------- )

gizmo! (manufacture gizmo) ((cusing lathel))>

setup! (setup lathe! gizmo)

installed3 (installed lathe! (fixture gizmo))
II-------------------------------------------I

widget! (manufacture widget) m(sing milli)>
------------------ -- I

gizmo2 (manufacture gizmo) <(using lathe 1))

Figure 5.21: Time map depicting the situation in PWD4
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widgeti, and this time the planner considers two alternatives. The first plan uses the larger

of the two lathes lathe2, and the second plan uses the milling machine milll. Obviously

these two plans represent exclusive options, so we'll want to use the machinery developed

in Section 3.8 to distinguish the two plans. It's fairly simple to modify the task expansion

code shown earlier in Figure 4.6 to handle the appropriate tagging of alternative plans.

The required modifications include code for (1) collecting several answers corresponding to

alternative plans for achieving the same task, (2) creating an option corresponding to each

alternative plan, (3) adding the appropriate option to the support of each answer as the

associated plan is expanded into the time map, and (4) making sure that the alternatives

are declared mutually exclusive.

The actual process of selecting the set of viable alternatives could be carried out entirely
in DUCK. For this selection process, we might employ a predicate viable-alternative.

(The hardest part of handling multiple alternatives will be encoding the knowledge for

choosing a set of alternatives in a set of rules involving such a predicate.) The code for

handling the expansion of multiple alternatives might look something like the LISP fragment

shown in Figure 4.16. To simplify things I assume that the process of task selection has

already been carried out and ?task and ?type are bound in the current answer ans*: ?task

is bound to a time token corresponding to task in need of reduction and ?typ. is bound

to the type of that token. As each viable alternative is selected, the associated plan is

expanded into the time map supported by a option corresponding to that alternative. In a

full implementation, there would have to be tests to make sure that an option is not added

in cues where there is only one alternative being considered. There would also have to be

additional code to ensure that reduction assumptions get handled properly. I'll ignore these

complications and return to our example.

At this point, the time map contains two possibilities for achieving the vidgeti task,

and the planner is considering methods for carrying out gizao2. Using lathel looks like a

good idea, since the task gizao1 has already installed the gizmo fixture in this machine. In

the process of expanding this alternative, the token gizmo2 is automatically constrained to

follow gizfol, dependent upon the option corresponding to using lathel for gizao2. This

constraint is due to an abductive premise in the current answer generated in the course of

applying the rule in Figure 4.13.

The other lathe lathe2 will also work, but in this case the planner will have to make
the necessary fixture installation. Let's suppose that the planner wants to leave its options

. ..•. . . ..- - .. . . . . . . . . .'. ...... '" ... " ...-.-. ". '.'.-%... - -.- ".
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open, and decides to add alternatives corresponding to both lathel1 and lathe2 to the

time map. There is one additional complication. As the planner expands the installation

task for the plan to carry out gizmo2 using lathe2, it will notice a potential protection

violation. Recall that the planner is already considering a plan for vidgetl using lathe2.

One of the reduction assumptions for this plan involves protecting the fact that the widget

fixture is installed in lathe2 throughout the interval vidgeti. Since the installation task

for gizmo2 involves installing the gizmo fixture in lathe2, there is a potential protection

violation. At the point when the expansion occurs, the TMM will inform the planner that

gizmo2 must follow widgetl just in case lathe2 is used for both tasks. Ill assume that

the planner responds to this suggestion by adding the appropriate constraint.

Now there is one alternative for gizmol and two alternatives apiece for each of widgeti

and gizao2. There are four admissible choice assignments corresponding to four different

partial world descriptions. I'll refer to these partial world descriptions as PVD1, PWD2, PWD3,

and PVD1. Figure 4.17 shows the machines chosen for the tasks gizuol, widgetl, and

gizzo2 in these four distinct partial world decriptions. In addition, I have provided four

time maps in Figures 4.18, 4.19, 4.20, and 4.21 depicting the situations in PWD1, PWD2, PWD3,

and PWDI respectively.

Now let's consider the possibilites for expanding vidget2, and to simplifly things, sup-
pose that this task is constrained in such a way that it's not possible to use il1l. The

planner's only alternative is to use lathe2. There are two opportunities for avoiding the

cost of installing the widget fixture. These opportunities correspond to PMID and PWD2.

In the case of PWD2, all three tasks widgetl, gizmo2, and widget2 would have to be per-

formed in sequence. I could easily provide additional constraints corresponding to deadlines

for these tasks so that such a sequence would not be possible. In this case, PMDI would

be the only choice. If we assume that using nilll is to be avoided (this is often the case

as milling machines are versatile machines that shouldn't be tied up unnecessarily), then

perhaps it should be obvious to go for the set of alternatives underlying PUDI. This would

also be true if you were looking for the shortest overall plan. I don't want to pretend that

this decision is a simple one. The only point I'm making here is that the time map provides

the right sort of information to assist in making such decisions.

The process of selecting a reasonable set of alternative plans, noticing opportunities to

improve plans, and ruling out alternatives that are shown to be less attractive than the

competition is extremely hard. It is impossible unless the planner has some means for

2"" ' ."" ' ' :" -""" " ' ' ". , ' ". """"". ':"" . """. . ,' " ° "" , . -."..- - ..." ," . .- . .'''." '' ..-..... , . . ." ". . .'''''-..., ,. ''
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exploring the possibilities. The TMM method for maintaining several partial world de-

scriptions simultaneously provides an alternative to traditional backtracking methods. The

main advantage of the approach proposed here is that, by representing several possibilites

simultaneously, the planner has access to the right sort of information for making an in-

formed decision. Admittedly, there is a cost attached to maintaining several partial world

descriptions. However, since a great deal of the cost associated with storing and maintain-

ing multiple PWDs is shared, the techniques described in this dissertation should perform
better on the average than sequential (backtracking) methods. Of course, such a claim

assumes that the solution is to be found in that part of the search space defined by the
sets of alternatives selected. If the planner makes poor selections, then at least it should be

no worse off than it would have been backtracking. The advantage of the multiple PWD

method is simply that the selection process need only include the correct choices.

5.5 Summary

This section has provided some examples illustrating how the techniques developed for tem-

poral imagery are applicable to planning. In particular, I have shown how one might go

about representing plans, actions, and the effects of actions using the TMM. I have also

shown how one can reason about the applicability of plans for achieving tasks involving

partial orders and metric time. The hard problems of determining how to recover from an
interaction detected in the process of expanding a plan and how to choose an appropri-

ate plan in order to avoid such interactions in the first place, are not addressed by issues

raised in this chapter. I have, however, presented techniques for efficiently detecting such

interactions, and setting up the necessary machinery to tell the planner what constraints he
might possibly impose to avoid interactions. The technique of representing the effects of ac-

tions using auto-projection rules provides a powerful and modular approach to representing

plans. Also described were techniques used in the FORBIN planner for providing tempo-

rary estimates of the duration of tasks and handling a special class of resources. The basic

ideas for planning using a single partial world description were then extended to reasoning

about alternatives, and the methods for maintaining several partial world descriptions si-

multaneously were proposed as an alternative to traditional backtracking methods used in

planning.

. ..............-.-. .. .......... ....-.
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Chapter 6

Conclusions

6.1 Contributions

This dissertation deals with extending classical predicate-calculus data base systems to

naturally and efficiently handle a useful class of temporal reasoning chores (see Section

1.4). Common sense reasoning invariably requires some consideration of time. Temporal

reasoning of the sort described in this work is so common, in fact, that I have proposed

building the necessary supportive machinery into the deductive engine underlying predicate-

calculus data base systems.

Chapters two through four of this dissertation describe a particular approach to ex-
tending classical data base systems to deal with time. There are three issues to address in

assessing the contribution of this extension:

1. naturalness and expressive power of the notation: How clear is the language

for expressing temporally dependent facts, and what are the limitations on what I can

say in this language?

2. supported functionality: What sort of operations on temporal data are handled

by augmented deductive engine?

3. efficiency: What sort of performance can I expect from the system in handling rou-

tine temporal reasoning chores of the sort that typically arise in artificial intelligence

applications?

In the following three subsections I will speak of each of these in turn.

251
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6.1.1 A notation for expressing temporal information

The ontological commitments presented in Chapter 2 (Section 2.2) are so basic and so

innocuous that I refuse to spend any time defending them (though I am sure there will be

those that take exception to this stance). I have chosen to take points as primitive and

define intervals in terms of points, but that is essentially a detail. It happens to make sense

from a computational point of view, and I had no intuitions concerning whether points

or intervals as primitive provide a better foundation for a psychological theory (but see

[Allen 85) for an interesting discussion).

The language primitives introduced in Section 3.3 are again rather basic, though slightly

more controversial. Some may question the emphasis on metric constraints. I think that

the ability of the TMM to express and reason about duration and metric information is one

of its strong points. However, there ane those that would claim that interval relations like

precedes, overlaps, and meet [Alien 831 deserve greater prominence in a theory of time.

I concur and hope that the fact that predicates like precedes, overlaps, and meet can

be easily defined in terms of elt and the function distance with minimal computational

overhead will appease these potential detractors. I think, however, that reasoning about

duration involving metric constraints is a critical prerequisite to a computational approach

to reasoning about time. Purely qualitative information is easily handled in the time map

using elt, distance, and the simple quantity space [Forbus 84J (Sneg-inf s. *neg-tiny*.
0. 'pci-tiny*. *pos-juf*). Incomplete information, in the form of partially ordered

time tokens and "fuzzy" durations, is easily expressible in the notation for referring to

upper and lower bounds on the time separating pairs of points. The TMM provides a

suitable foundation for reasoning about all sorts of temporal information, qualitative as
well as quantitative. Suitable predicates can easily be defined to the meet the individual

programmers representational requirements.

The class of useful queries possible using the predicates elt, time-token, and tt in

conjunction with the operators M and A is quite extensive. I hope that the examples in

Chapter 3 have demonstrated some of the range of the TMM in this regard. There are

also severe restrictions on what can be expressed using these language constructs. The

most glaring deficiency concerns the expression of information about continuously changing

quantities. Actually the notion of "continuous change" is a red herring. The time map
cannot even deal effectively with discretely changing quantities like the number of lathes

available for use on a production line. I have considered extensions to the time map for
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performing the requisite reasoning tasks, but the requirement that the extension deal with

partial orders and provide a corresponding extension to the temporal reason maintenance

algorithms has proved difficult to meet. The computational problems for the general case

appear to be intractable (the issues are quite similar to those involving the problem of

reasoning about resources (i.e., transactions on "pools'" of similar objects) discussed in

Section 1.5). 1 believe that the techniques described in this dissertation can be extended

to deal with certain aspects of reasoning about continuous change. The hard part will be

isolating a useful functionality that can be efficiently supported (see [Chapman 85] for a

proposal along these lines involving what Chapman calls cognitive cliches). The difficult part

is not expressing such information, it is reasoning about such information. And reasoning

about temporally dependent facts is what this dissertation is most concerned with.

6.1.2 Functional requirements for temporal data base management

As I have repeated many times in the course of this dissertation, the temporal information

possessed by an agent in realistic situations is both incomplete and potentially defeasible.

In order to contend with these factors, I introduced the notion of persistence (Section

1.3.1) and a strategy for interpreting the information stored in time maps (Section 3.5).

This provided the basis for processing queries in partially ordered time maps involving

default assumptions about the persistence of fact tokens. The notion of protection (Section

1.3.2) was extended to deal with defeasible antecedent conditions involving facts persisting

over certain intervals, where these conditions are used as the basis for making various

consequent predictions. These techniques for managing temporal deductions fit in quite

nicely with methods for performing forward inference in static data base systems (e.g.,

[deKleer et al 77]).

Since the information contained in a time map is typically incomplete, there has to be

some method of exploring some of the possible completions. The query routines should

make the applications program aware of various possiblities that might provide a basis for

supporting certain sought-after conclusions or consequences. The TMM facilitates this sort

of reasoning by providing an abductive interpretation of the "true throughout' predicate

(Section 3.6). Using the abductive operator A, the system can propose additional constraints

(abductive premises) that restrict the current partially ordered time map in order to allow

a deduction to precede that would fail otherwise. In addition, the use of abductive answers

provides an application program with an inexpensive method for keeping around several
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hypothetical situations to facilitate the process of selecting the best such hypothesis.

In addition to techniques supporting what was termed controlled forward inference (Sec-

tion 3.2), the TMM also provides the necessary machinery for performing a temporal version

of pattern directed inference. Section 3.7 described notation for expressing rules that sup-

port a simple form of temporal implication (referred to as overlap chaining rules), as well as

a method for capturing certain causal effects of actions represented in the time map (referred

to as auto-projection rules). These rules don't suffer from the timing complications inherent

in controlled forward inference. They are especially useful in planning applications (Section

5.2), as they free the planner to concentrate upon only those aspects of a planning situation

that are of critical importance in achieving the desired coordination of a set of conjunctive

tasks. Side effects of actions need only come to the attention of the planner when they are

noticed to interfere with or somehow facilitate a plan currently under consideration.

Finally, there are times when reasoning about a single course of events or partial world

description (Section 2.5) is inadequate for certain tasks. In Section 3.8, 1 describe an

approach to dealing with uncertainty and indecision that involves maintaining several par-

tial world descriptions simultaneously. This approach is functionally quite different from

methods involving the use of traditional context mechanisms [Wilkins 841. The important

difference is that the deductive system takes on the responsibility of noticing sets of alter-

natives or choices (constituting contexts in a more traditional approach) in which a given

query might succeed or the consequent predictions of a particular auto-projection rule might

be realized. This provides a mechanism for recognizing opportunities for improving plans

(Section 5.4) and avoiding some amount of backtracking in certain situations [deKleer 84].

6.1.3 Efficiently managing temporal data base

In Section 1.4, 1 claimed that the techniques developed in this dissertation constituted a

solution to the temporal data base update problem (sometimes referred to as the frame

problem). There are two aspects to this problem. The first concerns determining whether

or not a proposition is true at a point or throughout an interval. The second aspect concerns

the reorganization of a temporal data base in response to various changes in its contents

and the detection of important consequences that follow from those changes. The TMM

addresses both of these aspects.

The organization of the time map makes it quite simple to determine whether or not
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a token of a given type spans a given point or interval. This determination can be made

without taking into consideration all of the events and their associated effects that fall

between the beginning of that token and the end of the period in question. The m

techniques used in performing such operations involve the use of temporal conditions (used

to monitor the validity of relationships between pairs of points) (Section 4.3.3), clipping

constraints (used in resolving apparent contradictions in order to restrict the duration of

persistences) (Section 4.3.1), and caching constraints for expediting the estimation of point-

to-point distances (used in determining the ordering relationship of two points) (Section

4.4.3). Simplifying somewhat, determining whether or not a fact P is true throughout an

interval ptl to pt2 requires finding the token of type P that most recently precedes pti and

then determining whether or not the end of that token can possibly follow pt2. The most

expensive part of this involves determining good estimates of the distance separating pairs

of points in the time map, and this operation is optimized using the techniques of Section

4.4.3.

Incremental reorganization of the time map is an important consideration in efficiently

maintaining the data base to support the above sort of queries. The techniques of temporal

reason maintenance (Section 4.3) see to it that only those parts of the data base affected by

the most recent modifications have to be updated. The temporal reason maintenance algo-

rithm effectively performs a sweep forward in time selectively updating only those aspects

of the time map as are indicated by the dependencies recorded in time map protections.

The methods described in Chapter 4 for propagating constraints (Section 4.3.3), monitoring

protections (Section 4.3.2), and resolving apparent contradictions (Section 4.3.1) make this

incremental reorganization possible. Temporal reason maintenance also plays an important

role in noticing certain critical consequences that follow from modifications to the data

base. Using special programs called change driven interrupts (Sections 3.2.5 and 3.5.2), an

application program can specify the type of consequences it is interested in being alerted to

and exactly what response is to be made assuming that those consequences manifest them-

selves. The basic technique is quite common in Al languages [Hewitt 71] [McDermott 73].

Its application to reasoning in time maps provides a natural generalization of the notion of

a critic [Sacerdoti 771 that responds to the detection of interactions (or in the case of the

TMM, protection failures).

It is ultimately up to the reader to determine whether or not the TMM represents an

efficient and natural extension of classical predicate-calculus data base techniques. Without
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access to the program it will be difficult to assess its efficiency. 1 would hope, however, that

the explicittion of implementation details and the discussion of the assumptions made in

guiding (Section 4.4.3) and cutting off (Section 4.3.3) search will at least convince the reader

that such implementations are feasible. Versions of the TMM have already been employed

in planning applications [Miller 85a], and I hope to have a complete distribution version
within the coming year. As for the naturalness of the notation and the range of functionality

supported, the examples of Chapter 3 should provide a basis for the reader to make his own

judgements. Admittedly there is a great deal of research that has yet to be done. The hope

is simply that the techniques presented here provide a reasonable start. The next section

suggests certain areas for further research.

6.2 Problems and possible extensions

There are a lot of problems and areas for further research that were mentioned in the course
of this dissertation. In this section, I will simply review these problems and refer the reader

back to the text in which the associated issues came up.

Time maps were originally developed for coping with large amounts of temporal infor-

mation. The time maps in the applications explored so far have yet to exceed 300 time

tokens. One ideal application of time maps would be to manage a large data base of facts

dealing with the correspondence of a journal editor or publishing house. The time map
would monitor publication deadlines, automatically generate nasty letters to laggard re-

viewers and writers, and notice when some reviewer was inadvertently swamped with more

work than he or she could possibly handle. Such a data base for a large journal would

easily involve thousands of time tokens and hundreds of auto-projection rules and change-

driven interrupts. Without some additional strategies for partitioning large time maps and

guiding search, I expect that the current implementation would be swamped by such ap-

plications. The techniques described in Section 4.4.3 just begin to exploit the available

structure for organizing time maps. Hierarchical organizations based on the calendar (days,

weeks, months, years) suggest simple but highly effective techniques that could be used to
partition time maps. Another problem involved in dealing with large time maps involves

setting up data dependencies to detect apparent contradictions (Section 4.3.1). Setting up

such predictions for all possible pairs of contradictory tokens is prohibitive. Luckily, in most

case it's hardly necessary. Most information in a temporal data base is unlikely to ever
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change. If the galley proofs for a certain manuscript are sent to the copy center, then that

fact is history. Every subsequent action that results in a change in the location of those

proofs needn't worry about whether the action occurs before or after the proofs were sent

to the copy center. It's highly unlikely that the data entry operator was mistaken about

the time that the proofs were sent to the copy center. It would seem that the problem of

selectively setting up data dependencies to detect and resolve apparent contradictions can

be handled efficiently in many applications.

In Section 4.7.2, 1 discussed the problem of reasoning about overlapping tokens of the

same type. If I know that there's a light in the kitchen from 8.:00 AM until midnight and

alight in the living room from midnight until noon, then I know there is a light on in

the house 24 hours a day. Currently the time map is not capable of making the general

observation that if P is true throughout the interval from ptl to pt2, P is true throughout

the interval from pt3 to pt4, and pt3 is between ptl and pt2, then P is true throughout

the interval from ptlI to pt4. Getting the time map to handle this sort of inference appears

to be one the simpler extensions of the TMM. Section 4.7.2 described a solution to this

problem, but it has yet to be implemented.

Section 4.7.1 described a method for dealing with nonmonotonic inferences of the form,

if you have no reason to believe (not P) is true anywhere in the interval from ptl to pt2,

then you are licensed to believe P throughout this interval. Writing code to handle queries

* of the form (K (tt ptl pt2 M), and monitor the continued validity of the underlying

default assumptions is not particularly difficult. The TMM supports such inferences using

what are called anti-protections. However, there are a number of efficiency considerations

that have to be dealt with before this sort of inference can be relied upon not to bog down

processing. In particular anti-protections must keep track of oil tokens of a particular type.

There must be some method for concentrating on a restricted subset of the set of all tokens

of a type. In this regard, the issues involved in handling anti-protections are much the same

as those involved in setting up dependencies to detect and resolve apparent contradictions

(see above). I am convinced that some method for efficiently performing nonmonotonic

inferences of the form (N (tt ptl pt2 M) can added to the TMM.

The current techniques for reasoning about alternatives ame the newest addition to the

time map routines, and as such the least is known about their general performance. Con-

straint propagation in time maps involving gating objects (see Section 4.6.2) can lead to an

exponential (in the number of gating objects) proliferation of search paths in the worst case.
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i In a sense this is unavoidable. The expectation (borne out by all of my experiece to date) is
that in most applications this exponential blowup will not occur. Even the general methods

for handling contexts [McDermott 83] have exponential worst case behavior, but, again,
this just doesn't appear to be a problem in practice. Nonetheless, this sort of issue requires

more attention if reasoning about multiple PWDs simultaneously is to be demonstrated as
a viable alternative to sequential methods.

The section containing the proof of correctness for the temporal reason maintenance

system (Section 4.3.5) provided a fairly restrictive criterion for guaranteeing termination.

There are two methods whereby the user might be freed from adhering to such a criterion.
First, it is possible that less restrictive criteria that still guarantee termination can be

found. In fact, such criteria are already available. However, these less restrictive criteria

are more complicated and hence more difficult for the programmer to adhere to. The second
method for relaxing termination criterion would be to make it the system's responsibility to

detect and recover from from circular dependencies that would normally lead to the current
algorithm failing to terminate. The latter might involve considerable processing overhead

(I suspect that the general problem of detecting time map dependency circularities leading

to nontermination is intractable). I hope that it will be easier to formulate less restrictive
criterion. Perhaps something akin to the no-odd-loop, criterion for static data dependency
systems [Charniak 80] can be formulated for time maps. In any case, there is a lot more to

be done to settle these issues.

There are occasions in which it would be convenient to handle apparent contradictions
involving tokens whose schemata (types) contain variables or terms whose properties change

over time (Section 4.3.1). For instance, (color block37 ci) contradicts (color block37

c2) even though all we currently know about c1 and c2 is that (member ci I(red green)

and (w c2 blue). Noticing such contradictions might be handled using various nonmono-
tonic inference techniques (e.g., abductive unification [Charniak 86]), but keeping track of

exactly which pairs of tokens are contradictory under the addition and deletion of facts is

likely to be expensive. In planning, this sort of inference may play an important role in the

process of managing the properties of partially instantiated parameters (or script var-iables)
introduced in plan expansion [Stefik 81]. For instance, suppose that the robot has decided
to service either lathe7 or lathe34. One consequence of this is that the robot will be in

either room4i or rooziT. From this the planner should be able to conclude that the robot
will no longer be in room5. Furthermore, if the success of a particular plan depends upon

!7
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the robot being in roomS, then the planner should be made aware of the fact that this plan

is endangered. I have very little in the way of suggestions at this point. I find the underlying

functionality suspiciously open-ended.

* . . . . ... . . . . .. . . . . .
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